
What’s wrong with PF

 $ grep XXX pf.c pfvar.h pf_*.[ch] if_pf*.[c,h] \
 ../../sbin/pfctl/*.[chy] | wc -l
 68
 $

Ryan McBride <mcbride@openbsd.org>

What is PF?

 The standard BSD Packet filter

 Started in 2001 after the removal of ipf from OpenBSD.

 Design goals:

 Free software

 Secure, robust packet filtering

 Correct, readable code

 Flexible but simple to use

 Good performance

 Now about 37,000 lines of code

"This feature is by design"

Some caveats for this talk:

 This will not be an exhaustive list.

 The scope is Architectural and general code quality issues, not bugs.

 Talking about PF in OpenBSD

 There have been lots of improvements since I spoke about PF at AsiaBSDCon 2007.

 (Coincidentally, FreeBSD’s PF is from early 2007 - with a couple of bugfixes ported)

About Bugs

 Bugs tend to accumulate in code where actual usage is a subset of possible functionality:

 anchors

 ioctl interfaces

 ipv6

 We need to keep this in mind when making design decisions.

 All the bugs are in code that was not written by Mike Frantzen.

How does development operate?

 Evolution rather than revolution

 Less invested in individual changes

 System always builds

 Rolling forward to new versions is easier

 Other subsystems remain integrated

Software Quality?

ISO Model (ISO 9126^H^H2500:2005)

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

 What about...

 Aesthetic Beauty

 Software License

 Having fun

 Is someone who produces such ugly slides qualified to discuss aesthetics?

Maintainability & Aesthetic Beauty

Neverending code cleanup

 ongoing style(9) cleanup

 Still some minor things to be found with static analyzers (i.e. clang)

 Some small things (noticed at n2k10 in Melbourne):

 inconsistent use of "pd" (struct pf_desc)

 some type inconsistencies (int,u_int8_t vs. sa_family_t)

 data structures cleanup (particularly struct pf_state, pf_rule)

 Complicated Internals

 Tables code uses the kernel routing table patricia tree code.

 pfr_buffer code in general

 	Requires passing arrays of identical objects

 pfctl’s handling of anchors is a nightmare

Usability & Maintainability

pf.conf Syntax

 Nominally LALR

 Initially based on ipf syntax

 Organic, mostly unplanned growth as PF gained functionality

 Now very challenging to maintain and extend

 parse.y has become increasingly confused whether or not it is a line oriented parser

 anchor in on $fxp0 {

 block

 pass in proto tcp from any to $webserver port { 80, 443 }

 pass in proto { udp, tcp } from any to $dnsserver port 53

 pass in proto tcp from any to { $webserver $dnsserver } port 22

 }

Usability & Maintainability

pf.conf Syntax

 Theo is trying to relax some of the rules of the syntax:

 Ordering of keywords

 braces "{ }" in lists of hosts: The macro expansion nightmare

 windows_hosts = "{" $host1 $host2 "}"

 broken_hosts = "{" $host3 $host4 "}"

 block in quick from any to $windows_hosts $broken_hosts

 2.5 hackathons spent failing to fix this

 Hostnames are converted to IP addresses at the wrong point in the parser stack

 IPv6 makes this about 6 times as hard

Usability & Maintainability

pf.conf Syntax

 Some improvements can also be obtained by removing features or replacing them with

better designed ones ones.

 This can backfire: e.g. route-to and friends were slated for removal. Now we have:

 route-to & friends

 alternate routing tables

 routing domains

Efficiency

Performance

 "best-case" performance has improved A LOT in the past 3-4 years

 See henning’s EuroBSDCon 2009 talk

 (upcoming data structure diagrams based on this)

 "worst-case" performance is still an issue

 The cost of ruleset evaluation is very high

 Two cases:

 CPU attack: packet traverses the ruleset, gets blocked

 CPU+RAM attack: packet traverses the ruleset, creates state

 In theory we can fix the first with performance improvements in ruleset evaluation (easy to

say, hard to do).

 The second one is much harder to deal with.

Portability

 Portability within OpenBSD is very good :-)

 Portability to other OSs... Pretty good, but getting harder

 At least some version of PF runs on all major BSDs

 Ported to Windows (CoreForce)

 The project’s policy here is the same as for OpenSSH: we will not complicate the base

code with portability goo.

 Newer performance improvements rely on PF’s tentacles getting into other subsystems.

Tentacles

Where PF fits on the stack

Computer Running OpenBSD

ip_forward()ipv4_input() ip_output()

pf_test()pf_test()

Tentacles

Passing data to from input to output path

 The struct pkthdr_pf appears directly in struct mbuf_hdr:

 struct pkthdr_pf {

 void *hdr; /* saved hdr pos in mbuf for ECN */

 u_int rtableid; /* alternate routing table id */

 u_int32_t qid; /* queue id */

 u_int16_t tag; /* tag id */

 u_int8_t flags;

 u_int8_t routed;

 };

 Small amount of data, huge performance improvement vs using mbuf tags.

 In the reald world, packets come on mbuf clusters, so this space in the header is usually

unused anyways.

Case study: PF State Table Reorganization

 MAJOR change conducted over a period of years

 Implemented as many individual changes

 Other PF development & improvement efforts continued without being held back by this

rearchitecture project.

State table reorganization

About the PF state table

 State entries contain

 Connection identifier (af, src ip, dst ip, src port, dst port)

 Connection Tracking

 Actions

 Links to other internal structures

 Indexed in red-black trees

 Used to be more like a forest:

 A RB tree for interface, interface group, and "floating" states.

 "floating" is the default, but searching needs to happen from most specific to least

specific.

 So basically 3 tree searches per state lookup

State table reorganization

Evolution by design

 Initial goal: end-to-end connection tracking

 PF states, routing, ipsec, tcp/udp all do similar lookups

 2 PF state lookups done on a forwarded packet

 We can combine these into a single lookup

 A number of other improvements were obtained along the way

 Single ’pf_test_rules’ rather than protocol-specific almost copies

 Improved state creation code

 Fix handling ’if-bound’ states

 Deprecation of ’scrub’ rules

 Deprecation of separate translation ruleset

 ’match’ rules

State table reorganization

struct pf_state in the dark ages

state (group)

loads of magic

protocol
family
port_ext

port_lan
addr_ext
addr_gwy

port_gwy

interface
direction

addr_lan

search

search

loads of magic

protocol
family
port_ext

port_lan
addr_ext
addr_gwy

port_gwy

interface
direction

addr_lan

search

loads of magic

protocol
family
port_ext

port_lan
addr_ext
addr_gwy

port_gwy

interface
direction

addr_lan

state (interface)

state (floating)

State table reorganization

pf_state / pf_state_key split, single state table

state

addr_ext

port_ext

protocol
family

statelisthead

addr_lan

port_lan
port_gwy

addr_gwy

queue magic
state

state item

queue magic
state

queue magic
state

state item

queue magic
state

state item

state key

interface
direction
loads of magic

state key

interface
direction
loads of magic

state key

interface
direction
loads of magic

state key

interface
direction
loads of magic

state key

state state

state item

state

State table reorganization

Stack/Wire distinction

side

wire stack

side side

stack wire

side

ip_output()

pf_test() pf_test()

ipv4_input() ip_forward()

Computer running OpenBSD

State table reorganization

Stack/Wire distinction: without NAT

 sk wire

address1
address2
port1
port2

protocol
family

statelisthead

state key

queue magic
state

state item

state

loads of magic

sk stack

interface
direction

State table reorganization

Stack/Wire distinction: with NAT

direction

address1
address2
port1
port2

protocol
family

statelisthead

state key

queue magic
state

state item

address1
address2
port1
port2

protocol
family

statelisthead

state key

queue magic
state

state item

interface

loads of magic

state

sk stack
sk wire

 Determining whether NAT is taking place is just a pointer comparison now.

 There is nothing that says the address family has to be the same...

More tentacles!

Saving a pointer to the state

 struct pkthdr_pf {

 void *hdr; /* saved hdr pos in mbuf for ECN */

 u_int rtableid; /* alternate routing table id */

 u_int32_t qid; /* queue id */

 u_int16_t tag; /* tag id */

 u_int8_t flags;

 u_int8_t routed;

 };

 void *statekey; /* pf stackside statekey */

State table reorganization

State linking

 Inbound: we store a pointer to the stackside state key in the pkthdr

 Outbound: finding the state key is as simple as:

 if (dir == PF_OUT && m->m_pkthdr.pf.statekey &&

 ((struct pf_state_key *)m->m_pkthdr.pf.statekey)->reverse)

 sk = ((struct pf_state_key *)m->m_pkthdr.pf.statekey)->reverse;

 no more redundant state table searches!

State table reorganization

State linking in the forwarding case

interface: em1

address1
address2
port1
port2

protocol
family

reverse
statelisthead

queue magic
state

state item

address1
address2
port1
port2

protocol
family

reverse
statelisthead

queue magic
state

state item

sk wire sk wire

state key

state

state key

state

sk stack

loads of magic

sk stack

loads of magic

interface: fxp0
direction: in direction: out

Even more tentacles

Sticking more in the state

 Now that relevant PF states are directly to the packet, we can use the state to cache other

things:

 TCP/UDP PCBs (for locally terminated connections)

 route lookups

 IPsec SAs

 Other tunnel/connection contexts (npppd?)

State table reorganization

Timeline

 Initially concieved			~ May 2004 (after pf2k4)

 Interface abstraction cleanup		2005-05-21	1.489

 Alternate Routing Tables		2006-07-06	1.513

 Basic split of state struct		2007-05-29	1.534

 Fix interface-bound states		2007-06-21	1.546

 Core state table change		2008-05-29	1.576/1.577

 Link inbound/outbound states		2008-06-11	1.590

 Link states to PCBs			2008-07-03	1.604

 Remove scrub rules, add match		2009-04-06	1.640

 Remove NAT/RDR/BINAT rules	2009-09-01	1.658

State table reorganization

Some observations

 Except for the alternate routing tables (which was needed for other reasons anyways), no

major backouts were required.

 Some small but scary changes were temporarily disabled when problems were

encountered.

 Unfortunate side effects:

 New model is more challenging to understand and work with.

 Fortunate side effects

 We get the ability to do nat/rdr on both inbound & outbound

 Particularly helpful when you need to rewrite both addresses

 Currently disabled in the parser (lots of documentation and possibly a little code needed

to handle the routing challenges).

 New model makes it easier to implement things we didn’t plan for (like NAT64).

What’s Next

 A couple more performance optimizations

 Linking of route-table entries to states

 Work on Congestion handling has moved lower in the network stack (drop packets

earlier)

 Hopefully, a period of stabilization and polishing

 3000 line diffs are not fun for anyone

 Documentation of PF internals

 It is now impossible to plan core PF changes without some version of the state-linking

diagram

What can YOU do to help?

 Developers

 GOOD code, especially:

 bug fixes

 simplification / cleanup

 Users

 Good bug reports

 Buy CD’s, TShirts

 Donate

 Encourage companies to donate

 Documentation

Any questions?

