
Hardware Performance Monitoring Counters on non-X86
Architectures

George V. Neville-Neil
Neville-Neil Consulting
gnn@neville-neil.com

February 9, 2010

Abstract

Hardware Performance Monitoring Counters provide
programmers and systems integrators with the ability
to gather accurate, low level, information about the
performance of their code, both at the user and kernel
levels. Until recently these counters were only avail-
able on Intel and AMD chips but they have now been
made available on alternate, embedded, architectures
such as MIPS and ARM. This paper discusses the
motivation, design and implementation of counters
using the hwpmc(4) driver in the FreeBSDoperating
system with an eye towards easing future porting ef-
forts.

1 Motivation

As long as there have been computers there have been
attempts to measure the performance of the code that
is running on them. In the early days of computing
the cost of owning and maintaining a computer was so
high, and the speeds of the systems were so slow that
it was vitally important to squeeze every last ounce of
performance out of a system. More recent computers
are vastly faster than their ancestors but there are
still many reasons to measure and improve the per-
formance of software. Any programmer worthy of the
title will, by nature, wish to produce the fastest and
tightest code, but this kind of personal concern for
the quality of one’s code is not the force behind cur-
rent efforts to improve the performance of software.
In the first decade of the 21st century the driving

force behind the amazing improvements in the speed
CPUs abruptly died. Moore’s Law, which stated that
transistor density on a chip would double every 18
months, and by which every computer user from 1965
until 2005 benefited, can no longer be counted on to
cover up the poor performance of software[6]. Newer
chips do not bring higher clock speeds, but instead
they now pack multiple copies of the CPU onto the
same die, giving a higher core count but not, over-
all, improving the speed of any single-threaded pro-
grams. The performance of a program that is not
easily broken down into components which can exe-
cute independently on several cores will not improve
with a new processor but remain mostly static, which
makes performance analysis a more pressing concern
than at any time in the history of computing.

Analyzing the performance of software is a tedious
and difficult process which encompasses experimental
design, data collection and data analysis. This paper
will not address experimental design or data analysis
but instead discuss improvements in the area of data
collection.

2 History of Performance Data
Collection

Collecting performance data while running a piece of
software presents several problems, the most difficult
of which is making sure that the data collection pro-
cess has a minimal effect on the performance of the
system that is being measured. For many years the

two most common ways to measure the performance
of a system were to run it in a simulator or to have
the compiler insert special pieces of code into the fi-
nal executable which told the operating system to
periodically collect performance data[3].

Anyone who has used a simulator, in particular
one that is implemented purely in software, knows
that the correlation between how the software runs in
the simulator and on real hardware is relatively poor.
It is very difficult to have a software simulator that
shows all of the perverse corners cases that are found
in hardware and unfortunately it is just these cor-
ner cases which can be important to understanding
and improving the performance of a system. Interac-
tions between memory buses, caches, and devices are
notoriously difficult to simulate, and yet, in modern
computer architectures it is these components which
may make or break a piece of software.

By far the most common way to collect perfor-
mance data is to have the compiler insert special code
into the executable version of a program and then to
have the operating system collect the information pe-
riodically while the program is running. While this
second approach gives a far more accurate picture
of what is going on when a program executes it has
several drawbacks. Inserting extra code into the pro-
gram changes how the program executes, which is
a computer science version of the observer paradox
from physics. In this case the observing of the pro-
gram changes its performance characteristics. While
the fidelity of the data collected will be higher than
in a software simulator it may not be of sufficiently
high fidelity to make appropriate decisions about per-
formance trade-offs. Collecting data in this way also
leaves out an important component, the operating
system itself. If the system cannot be viewed in its
totality then it is quite possible that the developer
will wind up optimizing the wrong piece of code.

3 Hardware Performance Mon-
itoring Counters

With the huge growth in the number of transistors
that could be placed on a single silicon wafer, hard-

ware engineers went looking for things to do with
these transistors. Over time, functionality that used
to reside outside of the CPU, such as floating point
co-processors, caches, and I/O devices were moved
onto the CPU, which sped up the overall operation
of the system while reducing the problems of hook-
ing the components together. It is far easier to make
sure the results of some operation show up in the
right place and at the right time if all of the com-
ponents involved in the operation are on a single die
and do not have to go off chip. In the early 1990s
the first performance monitoring counters appeared
on commercial CPUs.[2] Unlike other features that
had been integrated onto the CPU the counters were
there purely to collect data on the performance of the
software that executed on the chip.

The purpose of a hardware monitoring counter is to
keep track of how many operations, of various types,
a processor completes during the execution of a piece
of software. There are three parts to any system that
provides a set of performance monitoring counters;
the counters themselves, which are special registers
that are incremented when some known event takes
place, the set of events which may cause the regis-
ters to increment, and the registers which are pro-
grammed to tell the chip which events to count and
where to deposit the results.

Early implementations of performance monitoring
counters provided space to count only one or two
events at a time, and only supported a few events. As
the transistor count on CPUs increased, the number
of simultaneous counters the number of events that
could be tracked increased. Where a Pentium proces-
sor from Intel had only two registers to store coun-
ters and 75 events, a Nehalem processor has space
to record up to seven simultaneous counters and over
300 events that can be tracked.

4 Driver and Library API and
Architecture

In the FreeBSDoperating system the hwpmc(4)
driver, user space libraries, and controlling programs,
pmcstat(8) and pmccontrol(8) are responsible for

Directory Contents
src/lib/libpmc PMC Libraries
src/sys/dev/hwpmc Driver Source Code

Figure 1: Source Code Locations

programming the underlying hardware, periodically
collecting the results from the CPU, and deliver-
ing the information to the user. The libraries allow
developers to write their own performance tools or
to adapt other libraries or performance tools to the
FreeBSDsystem[1].

The code that implements the hwpmc subsystem
is broken up into two major groups, the library and
the driver. The driver is responsible for talking to the
hardware, programming the registers, and collecting
the data. The library is responsible for translating
the collected data into something that is easily con-
sumable by programs that wish to analyze other pro-
grams. While events can be read and processed di-
rectly from the driver it is more common to have the
driver write the events into a log file. The user level
code opens a file and then hands the open file descrip-
tor to the driver via the pmc_configure_logfile
function in the pmc library. Once the log file is con-
figured the driver will place all the collected events
into the log file until the driver is told to stop, af-
ter which the file is closed. The post processing of
events is also supported by the pmc library which al-
lows programs to open previously recorded log files
and to process them in any way they choose.

The code for the driver is kept in the
src/sys/dev/hwpmc/ directory and is organized into
files separated by architecture and CPU as seen in
Figure 2. Some of the files, such as those for ARM
and Sparc64, are simply stubs that do not have any
active code in them, while others, such as those for
AMD and Intel processors, as well as XScale and
MIPS now have rudimentary support for performance
monitoring counters.

All of the events supported on all of the different
CPUs are collected into a single file, pmc_events.h,
which acts as the bridge between the driver and
the library. If an event is not present in the
pmc_events.h file then it can not be programmed

File Purpose
hwpmc amd.c AMD K7, K8
hwpmc arm.c ARM
hwpmc core.c Intel Core Architecture
hwpmc ia64.c Itanium
hwpmc intel.c Generic Intel Code
hwpmc logging.c Internal Logging Code
hwpmc mips.c MIPS
hwpmc mod.c Kernel Module Routines
hwpmc pentium.c Pentium
hwpmc piv.c Pentium IV
hwpmc powerpc.c PowerPC
hwpmc ppro.c Pentium Pro
hwpmc sparc64.c SPARC64
hwpmc tsc.c Time Stamp Counter
hwpmc x86.c Intel Callchain Support
hwpmc xscale.c Intel XScale (ARM)
pmc events.h All Events for All Processors

Figure 2: Driver Support Files

Method Meaning
pmd pcpu init Do per-CPU initializtion
pmd pcpu fini Per-CPU teardown
pmd switch in Context switch in
pmd switch out Context switch out
pmd intr Handle interrupt

Figure 3: PMC Machine Dependent Methods

or collected by the system. We will come back to
this file later when we add new events for the MIPS
architecture.

The driver is split up into two major groups of
functions that control the underlying hardware. Like
many other subsystems in the FreeBSDkernel, the
hwpmc driver uses a form of Objects in C to encapsu-
late both state and functions together within a struc-
ture. The two major structures present in the hwpmc
driver are the class and machine dependent
components which contain pointers to the functions
that implement the CPU specific code which actually
does the work of talking to the hardware. Whenever
a new architecture or CPU is supported the routines
in Figures 3 and 4 must be implemented.

Method Meaning
pcd config pmc Configure a PMC
pcd get config Read the configuration
pcd read pmc Read the counter value
pcd write pmc Write a counter value
pcd allocate pmc Allocate a PMC for use
pcd release pmc Release an allocated PMC
pcd start pmc Start counting events
pcd stop pmc Stop counting events
pcd describe Text description
pcd pcpu init Initialize the class
pcd pcpu fini End the class
pcd get msr Machine specific interface

Figure 4: PMC Class Methods

The class methods handle all of the generic work re-
quired by the hwpmc driver, including setting up and
tearing down state for each CPU in a multi-processor
system as well as handling context switches and in-
terrupts. The hwpmc system needs to know when a
process is running because the user is allowed to ask
the system to record events only for a specific process
and therefore event collection may be started when a
process is context switched in and stopped when it is
switched out.

The class methods are used to directly control the
underlying counter hardware. Because it is possi-
ble to have different classes of counters, for instance,
Intel Core processors have two different types, it is
necessary to encapsulate the state and methods into
a structure that is independent from the pmc_mdep
structure. Briefly, a CPU has only one pmc_mdep
structure but may have several pmc_classdep
structures.

In order to support a new CPU or architecture
both of these structures must be filled in with work-
ing code. These structures give some clues as to
how the pmc driver works with the underlying hard-
ware. A pmc goes through a particular life-cycle
when it is used. Before events can be counted the
system must allocate a counter for use. Allocat-
ing a counter merely reserves is, but does not count
any events. After the counter is allocated it is
started. While the counter is running it is count-

• Add events to pmc events.h

• Add all methods

• Modify libpmc.c

• Document counters

• Test

Figure 5: Porting Process

ing events. The driver collects the events and writes
them to an internal log that is read by the library.
When the counter is no longer needed it is stopped
and then released. This life cycle is implemented
by the pcd_allocate_pmc, pcd_start_pmc,
pcd_stop_pmc and pcd_release_pmc functions.

5 MIPS Counters

Like other vendors in the embedded systems space
MIPS has added support for performance monitor-
ing counters only recently. CPUs in the MIPS32 24K
processor family support only two simultaneous coun-
ters and more than 90 events. The counters are pro-
vided as two pairs of registers, one half of the pair
is the control register which indicates which event
to record and whether to record the event when the
CPU is in kernel, user or interrupt mode. The second
register in the pair is a 32 bit wide container which is
incremented whenever an event is triggered[4]. Pro-
gramming these registers is complicated by the fact
that an event takes on a different meaning depend-
ing on whether it is programmed into pmc 0 or 1.
For example when event 5 is programmed into pmc
0 it counts instruction TLB accesses, but when it is
programmed into pmc 1 it counts instruction TLB
misses.

Porting the hwpmc driver to the MIPS architecture
required several steps, which are outlined in Figure 5.

The most time consuming and tedious part of port-
ing the hwpmc driver to a new architecture is adding
and tracking the new events. The system has a well
defined set of macros which help organize the events,

#define PMC EV MIPS () \
PMC EV(MIPS , CYCLE) \
PMC EV(MIPS , INSTR EXECUTED) \
PMC EV(MIPS , BRANCH COMPLETED) \
PMC EV(MIPS , BRANCH MISPRED) \
PMC EV(MIPS , RETURN) \
PMC EV(MIPS , RETURN MISPRED) \
PMC EV(MIPS , RETURN NOT 31) \
PMC EV(MIPS , RETURN NOTPRED) \
PMC EV(MIPS , ITLB ACCESS) \
PMC EV(MIPS , ITLB MISS) \

...

Figure 6: MIPS events in pmc events.h

/∗
∗ MIPS E v e n t s f r om ” Prog ramming t h e MIPS32 24K Core Fam i l y ” ,
∗ Document Number : MD00355 R e v i s i o n 0 4 . 6 3 December 19 , 2008
∗ The s e e v e n t s a r e k e p t i n t h e o r d e r f o u n d i n T a b l e 7 . 4 .
∗ For c o u n t e r s w h i c h a r e d i f f e r e n t b e t w e e n t h e l e f t hand
∗ co l umn (0 / 2) and t h e r i g h t hand co l umn (1 / 3) t h e l e f t
∗ hand i s g i v e n f i r s t , e . g . BRANCH COMPLETED and BRANCH MISPRED
∗ i n t h e d e f i n i t i o n b e l o w .
∗/

Figure 7: Event Documentation Reference

but with more than 90 of them to add, many of which
have similar names, it is still easy to make mistakes.
The pmc_events.h file contains all the events for
all the architectures and CPUs that are supported by
the hwpmc driver. Adding a new set requires defin-
ing the events and their names. The events must be
added in the same order in which they are enumer-
ated in the manual. Figure 6 shows the first 9 events,
of 92, being defined for the driver.

The __PMC_EV macro defines an event for use by
the driver and is used to define events for all of the
architectures. The events are defined in the docu-
mentation for each chip and that documentation is
referenced directly in the code, as seen in Figure 7.

At the very end of the pmc_events.h file is where
the set of all known PMC events is defined. In order
to complete the addition of the new events an entry
must be added to the __PMC_EVENTS macro which
defines a range for the new events. The range bears
no relation to the event number used by the hard-
ware, it is simply a convenient way to reserve blocks
of numbers for the driver to use to map events into
the system. The current set of known events is shown
in Figure 8.

One of the major complications in handling the
MIPS events is that events with the same number

#define PMC EVENTS() \
PMC EV BLOCK(TSC, 0x01000) \
PMC EV TSC() \
PMC EV BLOCK(K7, 0x2000) \
PMC EV K7 () \
PMC EV BLOCK(K8, 0x2080) \
PMC EV K8 () \
PMC EV BLOCK(IAF , 0x10000) \
PMC EV IAF () \
PMC EV BLOCK(IAP , 0x10080) \
PMC EV IAP () \
PMC EV BLOCK(P4 , 0x11000) \
PMC EV P4 () \
PMC EV BLOCK(P5 , 0x11080) \
PMC EV P5 () \
PMC EV BLOCK(P6 , 0x11100) \
PMC EV P6 () \
PMC EV BLOCK(XSCALE, 0x11200) \
PMC EV XSCALE() \
PMC EV BLOCK(MIPS , 0x11300) \
PMC EV MIPS ()

...

Figure 8: Event Table

enum pmc event pe ev ;
u i n t 8 t pe code ;

} ;

/∗
∗ MIPS e v e n t c o d e s a r e e n c o d e d w i t h a s e l e c t b i t . The
∗ s e l e c t b i t i s u s e d when w r i t i n g t o CP0 s o t h a t we
∗ can s e l e c t e i t h e r c o u n t e r 0/2 o r 1 / 3 . The c y c l e
∗ and i n s t r u c t i o n c o u n t e r s a r e s p e c i a l i n t h a t t h e y

Figure 9: Event Table

have a different meaning depending on which counter
register they are programmed into. A subset of the
events, including those for counting cycles and in-
structions, are the same in either counter 0 or counter
1.

Figure 9 shows a portion of the code from
hwpmc_mips.c which defines the event codes spe-
cific to the MIPS architecture. Only the cycle and in-
structions executed have a unique number while the
events that follow show up as pairs. The code which
controls the counters must make sure to program the
correct counter in order to record the correct events
at run time.

Once all of the codes have been listed in the appro-
priate structures the supporting methods for the ma-
chine dependent and class structures must be written.
This code is not reproduced here but it is important
to point out a few of the salient features of the MIPS
architecture as they relate to hwpmc.

MIPS is like many RISC CPUs in that it is not so
much a single processor as it is a collection of pro-

cessor functionality that can be tied together by a
systems designer in order to provide a very targeted
set of functionality. The way that this is achieved is
that there is a small defined subset of functionality
which acts as an irreducible core, tied with a simple
method of extending the core to add new functions.
The MIPS architecture is actually flexible enough to
allow for extensions that could not have been envi-
sioned by the original MIPS designers. The extension
mechanism used by the MIPS architecture is to pro-
vide a set of coprocessor registers which can be read
and written using the core instructions, MFC0 and
MTC0, which stand for “move from co-processor 0”
and “move to co-processor 0” respectively. Extended
functionality, such as performance monitoring coun-
ters, is implemented using this co-processor system.

The instructions used for interacting with the co-
processor have one interesting side effect, they are
memory barrier instructions. RISC architectures de-
pend heavily on instruction pipelining to achieve high
performance. Talking to a co-processor presents a
hazard because “resources controlled via Coproces-
sor 0 affect the operation of various pipeline stages of
a MIPS32 processor, manipulation of these resources
may produce results that are not detectable by sub-
sequent instructions for some number of execution
cycles. When no hardware interlock exists between
one instruction that causes an effect that is visible
to a second instruction, a CP0 hazard exists.”[5] The
use of these instructions has the effect of flushing the
pipeline and also of possibly impacting performance,
so they must be used sparingly otherwise we run the
risk of the performance counting system having a sig-
nificant negative effect on performance. All of the
code used in the MIPS specific parts of the hwpmc
driver attempts to minimize the use of these poten-
tially disruptive instructions, and developers working
with similar architectures must pay close attention to
the same issues.

With the work in the driver complete, the last step
is to make the libpmc library aware of the new archi-
tecture and CPU support. The library only needs to
know about the events that are available on a par-
ticular CPU, and does not need to know how to pro-
gram the hardware, as that is the job of the driver.
Event names are communicated to the library via the

stat ic struct pmc event a l i a s m ip s a l i a s e s [] = {
EV ALIAS(” i n s t r u c t i o n s ” , ”INSTR EXECUTED”) ,
EV ALIAS(”branches ” , ”BRANCH COMPLETED”) ,
EV ALIAS(”branch−mispred i c t s ” , ”BRANCH MISPRED”) ,
EV ALIAS(NULL, NULL)

} ;

Figure 10: MIPS Aliases

pmc_events.h file which is effectively shared be-
tween the driver and the library.

The link between the library and driver is, in part,
through the pmc.h file which is part of the ker-
nel source and is installed when a new kernel is in-
stalled. The CPU and the class must be declared in
this include file to make the driver and the library
aware of the new architecture. The declarations are
made available via a pair of macros __PMC_CPU and
__PMC_CLASS respectively.

The final set of modifications are to the library it-
self, libpmc.c, where various macros are used to
declare the various class and machine dependent ta-
bles that are used to describe the low level hardware
and events to high level programs. With the prolif-
eration of profiling events available on various archi-
tectures it is nice to be able to depend on there being
a mapping from a well known event, such as the one
which counts instructions, to the specific event as it is
implemented on a particular CPU. The pmc library
makes it easy for a programmer to map an event to
an alias, which is usually a common, or well known,
term for performance analysis.

In Figure 10 we see three aliases which
map the MIPS specific events INSTR_EXECUTED,
BRANCH_COMPLETED, and BRANCH_MISPRED to
the aliases “instructions”, “branches”, and “branch-
mispredicts.” It is a convention in the hwpmc system
that CPU and architecture specific events are pre-
sented in ALL CAPS while aliases are lower-case.

With all of the code in place we can now go on
to documenting and testing. The hwpmc system has
always been well documented, which is a necessity in
a system that has so many possible events to explain.
The documentation is contained in architecture spe-
cific man pages that accompany the library and which
are installed with it. A final thing to note is that the
library and the driver must match, installing two dif-

ferent versions will not work and in the best case will
give obvious errors, but in the worst case may give
misleading data.

6 Related Work and Conclu-
sions

The hwpmc driver, libraries and user land programs
were originally developed by Joseph Koshy. The first
non x86 architecture to be added to the hwpmc driver
was Intel XScale (ARM), which was committed by
Rui Paulo in late 2009. Other operating systems,
including Linux and Solaris provide access to perfor-
mance monitoring counters via their own methods.

With the spread of performance monitoring coun-
ters onto new hardware platforms porting the hwpmc
driver to new and different architectures is now an
important part of bringing the full functionality of
FreeBSDto developers and systems integrators. Not
having performance monitoring counters, and the in-
sight they can provide into system performance, both
for the kernel and user space applications, can lead to
poor performance and clumsy attempts at optimiza-
tion. This paper presented an example of porting
the driver and adapting the libraries to the MIPS
architecture. It is hoped that this will spur other
developers to add other architectures to the system.

7 Acknowledgements

The author would like to thank Rui Paulo and Fabien
Thomas for their comments on this paper, as well as
Joseph Koshy who has written and maintained the
hwpmc code from the start.

8 Bibliography

References

[1] Papi programmer’s reference. Manuals, pages 1–
212, May 2008.

[2] Intel Corporation. Intel(r) 64 and ia32 architec-
tures software developer’s manual vol 3a. pages
1–756, Jun 2009.

[3] Susan Graham, Peter Kessler, and Kirk McKu-
sick. gprof - a call graph execution profiler.
page 10, May 1998.

[4] MIPS Technologies Inc. Programming the
mips32 R© 24k R© core family. Manuals, pages 1–
116, Dec 2008.

[5] MIPS. Mips32 R© architecture for programmers
volume ii: The mips32 R© instruction set. Manu-
als, pages 1–296, Dec 2008.

[6] Gordon E. Moore. Cramming more components
onto integrated circuits. page 4, Jan 1965.

