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Abstract

In the legacy world of Internet Protocol Version 4 (IPv4),

the link layer protocol, the Address Resolution proto-

col (ARP) is known to be vulnerable to spoofing attacks,

but has nevertheless been in use entirely unsecured. The

Neighbor Discovery Protocol (NDP), which in the IPv6

world roughly corresponds to IPv4 ARP, is vulnerable

to a similar set of threats if not secured. The Secure

Neighbor Discovery (SeND) extensions counter security

threats to NDP by offering proof of address ownership,

message protection, and router authorization. The cur-

rent lack of robust support for SeND within BSD oper-

ating system family and drawbacks in the existing refer-

ence SeND implementation limits its deployment. We il-

lustrate the protocol enhancements and their implemena-

tion by rehashing the known problem scenarios with un-

secured NDP and providing the short information about

SeND. We then describe the design and implementation

of a new, BSD licensed, kernel-userspace API for SeND,

which mitigates the overhead associated with the ref-

erence implementation in FreeBSD, and which aims to

improve portability to other BSD-derived operating sys-

tems.

1 Introduction

IP version 6 (IPv6) [7] has been designed as the succes-

sor to IP version 4 (IPv4). Unlike the common opin-

ion that IPv6 is primarly the solution for the problem of

the shortage of public IPv4 addresses, there are many

other changes from IPv4 to IPv6 such as the hedaer

format simplification, improved support for extensions

and options, flow labeling capability, and authentication

and privacy capabilities. However, the most significant

changes are not in the IP protocol itself, but in the sup-

porting protocols and mechanisms that were developed

along with it, for example the ones that are related to the

communication between link local devices.

The communication between IPv4 link local devices

is supported by two protocols:

1. Address Resolution Protocol (ARP) that determines

a host’s link layer address [17], and

2. Internet Control Message Protocol version 4

(ICMP) that is a messaging system and an error re-

porting protocol for the IPv4 network layer [18].

ICMP provides various functionalities through the use

of ICMP messages, where two important functionali-

ties for the link local communication are ICMP Router

Discovery and ICMP Redirect. ICMP Router Discov-

ery messages [6] deal with the configuration of IP hosts

with the IP addresses of neighboring routers, using ICMP

Router Advertisement messages and ICMP Router So-

licitation messages. Since Router Advertisements are

used by routers only to advertise their existance and not

their location, there is a separate mechanism that uses

ICMP Redirect messages to enable routers to convey the

information about the optimal, alternate route to hosts.

There is also a certain number of ICMP based algorithms

that support the IPv4 communication between link local

hosts that are recommended for IPv4, but they are not

required and widely adopted. [4] defines some possible

approaches to solve Dead Gateway Detection, a scenario

in which the IP layer must detect the next-hop gateway

failure and choose an alternate gateway, but there is no

widely accepted IPv4 suite protocol for it.

Even though previously mentioned features work

properly in IPv4, they were developed in an ad hoc man-

ner. They consist of a great number of different proto-

cols, mechanisms, algorithms, and Internet Standards.

Both the nowadays Internet use case scenarios and se-

curity threat analysis are pointing out their various limi-

tations and the need for the enhancements.

IPv6 Neighbor Discovery Protocol (NDP) [15] is a

single protocol that corresponds to the combination of

all previously mentioned protocols (ARP, ICMP Router



Discovery, ICMP Redirect, and various recommended

ICMP mechanisms). Most of the Neighbor Discovery

Protocol functionalities are based on the five ICMPv6

control messages (Router Solicitation and Advertise-

ment, Neighbor Solicitation and Advertisement, and

Redirect). Router Solicitation is sent by hosts as the re-

quest for Router Advertisement. Router Advertisement

is sent by routers periodically or as a response to Router

Solicitation, to advertise the link local prefix and other

options. Neighbor Solicitation is sent by IPv6 hosts to

find out a neighbor’s link layer address or to verify that

a node is still reachable. Neighbor Advertisement is sent

by IPv6 hosts as a response to Neighbor Solicitation or

to propagate the link layer address change. Redirect is

sent by routers to inform hosts of the better first-hop des-

tination.

Neighbor Discovery Protocol functionalities are clas-

sified into two groups: host-host functionalities and host-

router functionalities. Host-router functionalities enable

the host to locate routers on the link local network (router

discovery), to differentiate between the link local net-

work and distant networks (prefix discovery), to find out

the parameters of the link local network and neighboring

routers (parameter discovery), and to autoconfigure their

IPv6 address based on the information provided by a

router. Host-host functionalities include the address res-

olution (ARP functionality in IPv4), the next-hop deter-

mination based on the datagram’s IP destination address,

the determination whether the host is directly reachable

(neighbor unreachability detection), and the determina-

tion of whether the choosed address already exists in the

link local network (duplicate address detection). NDP

function that does not belong in neither of two previ-

ously mentioned groups is the Redirect function. The

Renumbering functionality, a mechanism that takes care

of the renumbering based on the Router Advertisement

messages containing the prefix, sent in a timely manner.

The Renumbering mechanism is derived from the com-

bined use of the neighbor discovery and the address au-

toconfiguration. The Neighbor Discovery Protocol com-

bines all functionalities of IPv4 supporting protocols for

the communication between link local devices, but also

provides many enhancements and improvements over the

mentioned set of protocols. The typical example of one

such enhancement is the Neighbor Unreachability Detec-

tion [15] (NUD) that is one of the fundamental Neigh-

bor Discovery Protocol parts. IPv4 Dead Gateway De-

tection [17] (DGD) is similar to Neighbor Unreachabil-

ity Detection in IPv6, but addresses just a subset of the

problems that Neighbor Unreachability Detection deals

with. IPv4 Dead Gateway Detection is a simple fail-

over mechanism that changes host’s default gateway to

the next configured default gateway. There is no possi-

bility to distinguish whether the link local or a remote

Figure 1: Attack on Address Resolution

Figure 2: Redirect Attack

gateway has failed, or to get any detailed reachability in-

formation. Thus there is no possibility for the fail-back

to the previous router. Neighbor Unreachability Detec-

tion is enhanced mechanism that allows the node to track

the detailed reachability information about its neighbor,

either the link local host or the router. Based on the use of

ICMPv6 messages, it enables the host to fail-back to the

previous router, to make use of the inbound load balanc-

ing in case of replicated interfaces, to inform the neigh-

bors about the change of its link layer address.

Both IPv4 protocols supporting the link local commu-

nication and the Neighbor Discovery Protocol, if not se-

cured, are vulnerable and affected by the similar set of

threats. The initial Neighbor Discovery Protocol spec-

ification proposed the use of IPsec, specifically IP Au-

thentication Header (AH) [9] and IP Encapsoluationg

Security Payload [10], for the protection, by authenti-

cation the packet exchanged to overcome the shortcom-

ings. Unlike the Neighbor Discovery Protocol that can

be secured with the Secure Neighbor Discovery (SeND),

one of the significant shortcomings of the IPv4 protocols

supporting the link local communication, such as the Ad-

dress Resolution Protocol and other ICMP-based mech-



Figure 3: DAD Attack

anisms, is that there is no standardized, widely adopted

enhancement for securing them.

The next section discusses the main threats associated

to the Neighbor Discovery Protocol, illustrating the real

world attacks that have never been solved for IPv4, but

are solved for IPv6. It will further explain why the inital

proposal for the Neighbor Discovery Protocol protection

with IPsec was abandoned in favour of SeND.

2 Background

2.1 Neighbor Discovery Protocol (NDP)

threats

The Neighbor Discovery Protocol trust models and

threats are well known and clearly described in [16]. It

illustrates the following attacks:

• Attack on Address Resolution (Figure 1),

• Redirect Attack (Figure 2),

• Duplicate Address Detection (DAD) Attack (Figure

3),

• First-Hop Router Spoofing Attack (Figure 4),

• Address Configuration Attack (Figure 5).

The Neighbor Discovery Protocol [15] offers some ba-

sic protection mechanisms. For example it introduces the

limitation for the IPv6 source address to be either the un-

specified address (::/128) or a link-local address, or puts

the limitation on the hop limit to be set to 255, trying to

limit source address spoofing by making sure that packet

is coming from a host on a directly connected network.

However, the protection shield offered by the Neighbor

Discovery Protocol itself is not enough to encounter most

of the known threats. This is due the fact that Neighbor

Discovery Protocol as it is, is not able to offer any au-

thentication, message protection or router authorization

capabilities.

Figure 4: First-Hop Router Spoofing Attack

2.2 Neighbor Discovery Protocol and IPsec

The initial Neighbor Discovery Protocol specification

proposed the use of IPsec Authentication Header (AH)

to encounter known threats. This approach appeared to

be problematic. Theoretically, in the IPv6 architecture,

it is possible to secure all IP packets, including ICMPv6

and Neighbor Discovery messages, even the ones sent to

multicast addresses. Packets that are supposed to be se-

cured are filtered based on the Security Policy Database,

and then protected based on Security Associations main-

tained automatically by the Internet Key Exchange proto-

col (IKE). But here we end up with the chicken-and-egg

bootstraping problem [1]. IKE is not able to establish a

Security Association between the local hosts because in

order to send the IKE UDP message it would have had

to send the Neighbor Solicitation message, which would

have required the Security Association which does not

exist. Even if we decide to use a manual configuration for

Security Associations, which solves the bootstrapping

problem, we would be faced with the problem of main-

taining an enormous number of Security Associations,

especially when considering multicast links (Neighbor

Discovery and Address Autconfiguration use a few fixed

multicast addresses plus a range of 16 million ”solicited

node” multicast addresses). Even in scenarios with only

a small fraction of the theoretically maximum number of

addresses, which appear to be very common in case of

the local communication, statically preconfigured Secu-

rity Associations make the use of IPsec impractical.

2.3 Secure Neighbor Discovery (SeND)

Neighbor Discovery needed a different approach to en-

counter threats, a cryptographic extension to the basic

protocol that will not require the excessive manual key-

ing. To solve the problem IETF SeND working group

that was chartered in 2002 defined the initial SeND spec-



Figure 5: Address Configuration Attack

ification which was recently updated by RFC4861 [15].

The important thing to notice is that Secure Neighbor

Discovery is not a new protocol, but just a set of en-

hancements to the Neighbor Discovery Protocol. It is

based on four new Neighbor Discovery options prepend-

ing the normal Neighbor Discovery message options, and

two new messages.

Secure Neighbor Discovery enhances the Neighbor

Discovery Protocol with the following three additional

features:

1. address ownership proof,

2. message protection,

3. router authorization.

The addres ownership proof prevents the attacker from

stealing the IPv6 address, which is a fundamental prob-

lem for the router discovery, duplicate address detection

and address resolution mechanisms. This feature is based

on IPv6 addresses known as Cryptographically Gener-

ated Addresses (CGAs). CGA is a mechanism that binds

the public component of a public-private key pair to an

IPv6 address. It is generated as a one-way hash of the

four input values: a 64-bit subnet prefix, the public key

of the address owner, the security parameter (sec) and a

random nonce (modifier).

CGA(128) = Prefix(64)|IID(64)

IID(64) = hash(prefix, pubkey, sec, modifier)

The detailed description of the CGA generation proce-

dure is described in RFC3972 [2].

The owner of the CGA address sends the all CGA Pa-

rameters, including all required input data for the CGA

generation together with the CGA address to the verifier.

The CGA verification consists of the re-computation and

comparison of received CGA value based on the received

CGA parameters, including the public key. However, the

hash of the public key itself offers no protection at all,

if it is not used in combination with the digital signa-

ture produced using the corresponding private key. When

using CGAs in Secure Neighbor Discovery, the sender

signs the message with the private key that is possessed

only by him, and that is the key related to the public key

used in CGA’s interface identifier generation. This pre-

vents an attacker from spoofing a cryptographically gen-

erated address. All the information about the CGA pa-

rameters, such as the public key used for the CGA verifi-

cation, are exchanged within the new Neighbor Discov-

ery Protocol option - the CGA option. The impact of the

collision attacks in CGAs is described in RFC4982 [3].

Attacks against the collision-free property of hashes are

known, but their characteristic is that they deal with the

non-repudiation features. The attacker would be able

to create two different messages that result in the same

hash, and then use them interchangeably. The important

thing to notice is that both messages must be produced by

the attacker. Since the usage of CGAs in SeND does not

include the provision of the non-repudiation capabilities,

it is not affected by the hash collision attacks.

SeND offers message protection in terms of the mes-

sage integrity protection of all messages relating to

neighbor and router discovery, using the new Neighbor

Discovery option called RSA option. It contains a pub-

lic key digital signature calculated over the message, and

thus protects the integrity of the message and authenti-

cates the identity of the sender. Secure Neighbor Dis-

covery message that the sender signs with its private key

includes the link layer information, which creates the se-

cure binding between the IP address and link layer an-

chor. In such a way, Secure Neighbor Discovery al-

lows for the verification with the signer’s public key that

the host’s IP address is bound to the trustworthy lower

layer anchor. The public key trust is achieved either

through the CGA address ownership proof (in the neigh-

bor discovery procedure), or through the X.509 certifi-

cate chain (in the router discovery procedure), or both.

SeND also defines the Timestamp and Nonce options to

protect messages from reply attacks, and to ensure the

request/response correlation.

The router authorization feature introducies two nov-

elties to Neighbor Discovery:

1. it authorizes routers to act as default gateways for a

certain local network, and

2. specifies prefixes that an authorized router may ad-

vertise on this certain link.

A new host on the link can easily configure itself us-

ing the information learned by the router, while in the

same time there is no way a host can tell from the Neigh-

bor Discovery information, that the router is actually an



authorized router. If the link is unsecured, the router

might be a rogue router. At the moment when the host

should verify whether the router is a valid one, the host

is not able to do so since it is not able to communicate

with the off-link hosts. To solve this situation, SeND in-

troduces two new messages: Certification Path Solicita-

tion message and Certification Path Advertisement mes-

sage. The first one is sent by newly connected host to

the router. The second one is the response sent by the

router, and contains the certificate chain that contains

the certification path, that the host uses to validate the

router. The certificate path consists of the Router Autho-

rization Certificate that authorizes a specific IPv6 node to

act as a router, followed by intermediate certificates that

lead to the trust anchor trusted both by the router and the

host. Trust between the router and the hosts is achieved

through the third party - the trust anchor (X.509 Certifi-

cation Authority) [5]. The Router Authorization Certifi-

cate contains the information about the prefix that he is

authorized to advertize.

3 Implementation

Neighbor Discovery Protocol is widely supported by

many modern operating systems, since the NDP sup-

port is mandatory for IPv6 network stacks. The code

resides mainly in kernel. However, there are very few

Secure Neighbor Discovery implementations. None of

the contemporary open source operating systems ships

with built-in support for SeND.

3.1 Existing SeND implementations

The open-source SeND reference implementation (send-

0.2), originally developed by NTT DoCoMo, works on

Linux and FreeBSD. On FreeBSD, this implementation

uses a Berkley Packet Filter (BPF) interface embedded in

a netgraph node (ng bpf) to divert SeND traffic from ker-

nel to an userland daemon, and vice versa. This approach

has two major drawbacks. First, all network traffic (both

SeND and non-SeND) has to traverse through a ng bpf

filtering node (and through the netgraph subsystem in

general), which introduces significant processing over-

head, effectively prohibiting production deployment of

SeND in high-speed networking environments. And sec-

ond, the current send-0.2 implementation depends on the

netgraph subsytem, which is available only in FreeBSD

and DragonFlyBSD, making in send-0.2 implementation

being unusable on other BSD-derived operating systems,

such as NetBSD, OpenBSD or Mac OS X.

Figure 6 illustrates the design of DoCoMo’s SeND

implementation for FreeBSD. The communication be-

tween the Neighbor Discovery stack implemented in ker-

nel and the Secure Neighbor Discovery daemon flows

Figure 6: NTT DoCoMo’s send02 using netgraph nodes

and BPF

through the chain of netgraph nodes: ng ether, ng bpf

and ng socket. Packets that are incoming from the in-

terface’s point of view are protected with Secure Neigh-

bor Discovery options (CGA option, RSA Signature op-

tion, Timestamp and Nonce option). Before the kernel

will be able to process them in its Neighbor Discovery

stack the packetmust be validated and the Secure Neigh-

bor Discovery options which are all unkown to kernel

must be stripped of. Initially, all incoming packets arrive

to the ng ether ”lower” hook, which is a connection to

the raw Ethernet device and from there on to the ng bpf

”tolower” hook. That netgraph node will filter out the in-

coming packets that are protected by SeND options and

pass these packets through an ng socket ”out” hook to

the SeND daemon in user space, rather than passing them

on inside the kernel for normal upper layer processing.

In userland, Secure Neighbor Discovery options are

checked. Upon sucessfull validation all Secure Neigh-

bor Discovery options are removed, and injected back to

kernel, through the ng socket ”out” hook, ng bpf ”toup-

per” hook and ng ether ”upper” hook, is a pure Neighbor

Discovery message. The kernel will then pass the pack-

ets on through the normal input path to the upper layers

and process the Neighbor Discovery information. In case

that daemon cannot successfully validate the SeND op-

tions, it will silently drop the packet.

Packets that are outgoing from the interface’s point of

view must be sent to Secure Neighbor Discovery daemon

just before they are supposed to exit the outgoing inter-

face. After the kernel upper layer processing, which in-

cludes the Neighbor Discovery stack processing, all out-

going packets are forwarded throughthe ng ether ”upper”



hook to the ng bpf node. They are injected to the user-

land where the Secure Neighbor Discovery adds addi-

tional options to protect the packet. Packets on that way

flow through ng bpf ”out” hook and ng socket ”in” hook

to the userland. The Secure Neighbor Discovery dae-

mon prepends the normal Neighbor Discovery options in

the packet with the CGA option, RSA Signature option,

Timestamp and Nonce option, and sends the packet back

to kernel through the ng socket in hook and the ng bpf

tolower hook to ng ether. Packets then leaves the inter-

face through the ng ether lower hook, which is the direct

connection to the lower device link layer.

As mentioned previously, Secure Neighbor Discovery

also enhances the Neighbor Discovery Protocol with two

new messages that participate in the process of router

authorization. Neither the Certification Path Solicitation

message, nor the Certification Path Advertisement mes-

sage are processed in Neighbor Discovery kernel stack

since they are not the part of the basic Neighbor Discov-

ery Protocol. Thus both new messages are not exchanged

through netgraph nodes, but through the separate socket.

While the NTT DoCoMo implementation had the ad-

vantage, that it was written to be distributed independetly

of the operating system, not needing any operating sys-

tem changes, it had the drawbacks of using the netgraph

subsystem as well as hitting the Berkeley Packet Filter

for every packet. To address those problems the oper-

ating system itself has to be extended and the following

sections will discuss those changes.

3.2 Initial design decisions

• Avoid the use of netgraph.

Netgraph itself introduces the big overhead to pro-

cessing. Secondly, as the netgraph subsystem is not

available throughout the entire BSD operating sys-

tem family, it was not considered to be an option for

a portable implementantion. Further, avoiding the

need of netgraphm, could make an implementation

even more portable to other Unices as well.

• Avoid the use of BPF.

Using the Berkeley Packet Filter meant that all

packets, forwarded, for the local system or locally

originated would be affected and that this would re-

duce the performance of a lot of systems, especially

if connected to high speed networks, processing lots

of packets per second.

• Only defer processing of packets that might be af-

feccted by Secure Neighbor Discovery.

As only few ICMPv6 Neighbor Discovery packets

are actually affected by SeND it was clear that we

should only actually defer processing of those few

packets, rather than all. We would also never be

interested in packets, that were invalid at a certain

(lower) layer. Letting the already existing kernel

code do those checks and the handling for us, would

mitigate the risk of possible exploits through crafted

packets outside the core problem domain of Secure

Neighbor Discovery.

• Trigger only on the Secure Neighbor Discovery in

case SeND code was loaded.

Using kernel hooks that will not fire unless the

send.ko kernel module was loaded would ensure

that normal Neighbor Discovery processing would

not be affected for the default case. In case the

kernel module would be loaded it would guarantee

that all messages would traverse properly through

the Neighbor Discovery stack, as if it there was no

SeND daemon invloved in the processing.

• Use routing control sockets.

The routing control sockets have been chosen for

their simplicity to exchange messages between ker-

nel and userland, as they are easy to extend beyond

the scope of pure routing messages. Actually this

had been done before by the net80211 stack. Alter-

natives would have been to introduce a new, private

interface or extend another existing one, like the

PF KEY Key Management API [14], which would

have been way more complex.

• Add as few new code to the kernel as possible.

It was clear that changes to the kernel should be kept

to a minimum to ease portability and review, as well

as reducing the risk of introducing problems com-

plicating normal processing paths.

• Keep the separate socket to exchange Certification

Path Solicitations and Certification Path Advertise-

ments.

Since those options are exchanged end-to-end be-

tween Secure Neighbor Discovery daemons with-

out the use of the Neighbor Discovery kernel code,

there is no need to modify the kernel for those but

entirely keep their processing in user space.

• Keep the user space implementation.

If possible and to not re-invent the wheel of han-

dling the configuration and the actual processing of

the SeND payload, the NTT DoCoMo SeND dae-

mon should be kept but modified for the new kernel-

userland API. This would further allow already ex-

isting users to update without the need for changes

in their deployment (apart from kernel and daemon

updates).



Figure 7: Incoming Neighbor Discovery packet from the

wire.
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3.3 Native SeND kernel API for *BSD

The goal for the changes were to design and implement a

new kernel-userspace API for SeND mitigates the over-

head associated with netgraph and BPF and would be

easily portable.

In order to accomplish the implementation of such an

API, we separated the kernel changes into three main

parts:

1. Processing hooks to the existing Neighbor Discov-

ery (ND) input and output code.

2. The SeND kernel module for the dispatching logic.

3. Extensions to the routing control sockets for the

SeND kernel-userland interface.

The basic code flow is as follows: incoming Neighbor

Discovery packets or outgoing Secure Neighbor Discov-

ery packets are sent to the userland through the send in-

put hook. Neighbor Discovery packets are then passed

through the routing socket to the Secure Neighbor Dis-

covery daemon either for protection validation (incom-

ing packets) or (outgoing packets). On the way back to

kernel, packets traverse again through the routing socket,

but then through the send output hook. While the incom-

ing packets are sent back to Neighbor Discovery stack

in kernel, outgoing packets are then sent from the output

hook to if output() routines.

In the following sections we will describe the individ-

ual changes for each part in more detail.

The changes to the IPv6 part of the network stack can

be separated into Neighbor Discovery input and output

path.

For the input path changes were mainly to

the icmp6_input() function. There we

have to divert the ND packet for the follow-

ing ICMPv6 types: ND_ROUTER_SOLICIT,

ND_ROUTER_ADVERT, ND_NEIGHBOR_SOLICIT,

ND_NEIGHBOR_ADVERT and ND_REDIRECT. In-

stead of directly calling the respective function for direct

Figure 8: Outgoing Neighbor Discovery packet (reply or

locally triggered)
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processing of those ND types, we first check if the

send_input_hook and with that SeND processing

is enabled. If it is we pass the packet to the send.ko

kernel module for dispatching to user space. If SeND

processing is not enabled, the packet will follow the

standard code path to the normal ND handler function.
Pseudo-Code:

...

case ND_?????:

...

/*

* Send incoming SeND-protected/ND

* packet to user space.

*/

if (send_input_hook != NULL) {

send_input_hook(m, ifp, SND_IN,

ip6len);

return (IPPROTO_DONE);

}

nd6_??_input(m, off, icmp6len);

...

break;

...

For the output paths the changes are a bit more diverse

and complicated. This is because we can have three dif-

ferent ways that outgoing Neighbor Discovery packets

can be send:

1. via nd6_na_input() when flushing the ”hold

queue” (a list of packets that could not be sent out

because of the formerly missing link layer infor-

mation of the next-hop) in repsonse to the newly

learned link layer information.



2. by icmp6_redirect_output() function,

nd6_ns_output(), or nd6_na_output(),

3. or from user space applications like rtsol(8) or

rtadvd(8) via rip6_output().

None of those functions directly outputs the packet and

as we need to know the IPv6 header for the address, we

have to postpone SeND processing to a later point in

the output path. To be able to identify the packets later

though, we add an attribute, a ”tag”, to the mbuf(9) in the

formerly mentioned functions, if SeND processing is en-

abled. We also save the type as meta-information along

the way, though you may find that this will only be used

for assert.
Pseudo-Code:

...

struct m_tag *mtag;

if (send_input_hook != NULL) {

mtag = m_tag_get(

PACKET_TAG_ND_OUTGOING,

sizeof(unsigned short),

M_NOWAIT);

if (mtag == NULL)

goto fail;

*(unsigned short *)(mtag + 1) =

nd->nd_type;

m_tag_prepend(m, mtag);

}

...

As you might notice, there is a slight difference in

processing the outgoing Neighbor Solicitation, Neighbor

Advertisement and Redirect messages compared to the

processing of Router Solicitation and Router Advertise-

ment messages.

Neighbor Solicitations, Neighbor Advertisements and

Redirects are handled fully in the Neighbor Discovery

kernel stack. Generated messages are tagged with the

m tag

PACKET_TAG_ND_OUTGOING right after they are rec-

ognized in the Neighbor Discovery kernel stack to be the

output messages. This happens in sys/netinet6/nd6 nbr.c

in the

nd6_ns_output() and the nd6_na_output()

functions, as well as and icmp6.c in

icmp6_redirect_output().

The difference with outgoing Router Solicitation and

Router Advertisement messages is, that they are gen-

erated by rtsol and rtadvd daemons and not with the

kernel itself. Because of that, we cannot easily tag a

packet. We solved this problem by using the already

available socket, packet type and ICMPv6 informations

in rip6_output() in sys/netinet6/raw ip6.c and con-

ditionally tagging those packets there as well.
Pseudo-Code:

...

/*

* Tag RA/RS messages from rtadvd/rtsol

* to be sent to

* user land for SeND protection later.

*/

if (send_input_hook != NULL &&

so->so_proto->pr_protocol ==

IPPROTO_ICMPV6) {

switch (icmpv6_type) {

case ND_ROUTER_ADVERT:

case ND_ROUTER_SOLICIT:

mtag = m_tag_get(

PACKET_TAG_ND_OUTGOING,

sizeof(unsigned short),

M_NOWAIT);

if (mtag == NULL)

goto bad;

m_tag_prepend(m, mtag);

}

}

...

Our tests showed that neither rtadvd nor rtsol, or any

other third part user space application sending RA or RS

messages needs to be modified for SeND processing, as

that is handled transparently for them, with only minimal

changes to the kernel.

Depending on the code path, packets will be passed

on to ip6_output(), which will amogst other things

add the IPv6 header and nd6_output_lle(), which

would pass the packet to the interface’s output queue.

Prior this step, we check if the packet was previously

tagged by us and defer it for output path SeND process-

ing (Figure 8).
Pseudo-Code:

...

/*

* Send outgoing NS/NA/REDIRECT packet

* to sendd.

*/

if (send_input_hook != NULL) {

mtag = m_tag_find(m,

PACKET_TAG_ND_OUTGOING, NULL);

if (mtag != NULL) {

send_input_hook(m, ifp,

SND_OUT, ip6len);

return;

}

...

}

...

The send.ko kernel module consists of three

things: the send_input_hook and the

send_output_hook, as well as the module handling

logic that also takes care of enabling or disabling the

hooks upon load and unload.



The input and output hooks are named after the direc-

tion between kernel and userland. It should not be con-

fused with the incoming and outgoing direction of the

Neighbor Discovery packets.

• The send_input_hook takes packets from the

IPv6 network stack’s input and output paths and

passes them on to the kernel-userland interface for

processing by the Secure Neighbor Discovery dae-

mon.

• The send_output_hook gets packets from the

userland-kernel interface after processing by the Se-

cure Neighbor Discovery daemon to re-inject the

packets back into the IPv6 network stack.

In addition both hooks take an argument that describes

the direction of the packet:

• SND_IN is used for packets originated in the IPv6

input path. These packets are usually protected by

Secure Neighbor Discovery options and are sent to

userland first via the send_input_hook to be

validatied and all additional options to be stripped

off. When the packets are sent back again to ker-

nel for further Neighbor Discovery kernel stack pro-

cessing they are still tagged with SND_IN even

though they pass the send_output_hook (Fig-

ure 7).

• SND_OUT describes both reply or locally originated

outgoing packets. These pure Neighbor Discov-

ery packets, are sent to userland to be protected

with the Secure Neighbor Discovery options, after

the normal processing in the Neighbor Discovery

kernel stack via the send_input_hook. Once

userspace is done, they are sent back to kernel via

the send_output_hook to be sent out of the in-

terface using the standard output routines (Figure

8).

The last changes needed to the kernel were to inter-

act with userspace. The routing control sockets inter-

face was chosen for its simplicity and flexibility to be

extended.

Messages between the Neighbor Discovery kernel

stack and send.ko module and the Secure Neighbor

Discovery daemon are exchanged through the routing

socket.

The routing message type for the rt msghdr struc-

ture of the routing message indicating the Secure Neigh-

bor Discovery event is RTM_SND and is defined in

sys/net/route.h. The rtm seq field of the routing message,

which is by sender to identify the action is set to either

RTM_SND_IN or RTM_SND_OUT. This is done in paral-

lel to SND_IN or SND_OUT indicating either the incom-

ing or outgoing direction of messages that are passing

through the routing socket. Again the direction is inde-

pendent from the send.ko module input or output hook

naming.

The rt_securendmsg() function in

sys/net/rtsock.c handles the generation of the rout-

ing socket message indicating the Secure Neighbor

Discovery event, and it preserves all the existing func-

tions, i.e. for appending the Neighbor Discovery or

Secure Neighbor Discovery data to the routing message

header. The same had been done before for the net80211

stack with rt_ieee80211msg().

Input from userland back to the kernel is handled

by extending the route_output() function. The

rt msghdr is stripped of, and the packet is passed to the

send.ko send_output_hook again.

4 Future work

The decision to use the routing control socket for the in-

teraction with the userspace was made to overcome com-

plexities that would appear in case of the alternative ap-

proaches. However, there is the drawback caused by this

design decision, due to the unability of the routing socket

to provide better control of related daemon. First step to

improve our solution is to replace the routing socket in

order to provide the appropriate control over the active

daemon and a default policy in case of no active daemon

in the user spacee.

Along with the development of the native kernel API

for SeND, we have continued the development of a Se-

cure Neighbor Discovery userspace application. The cur-

rent implementation is still based on NTT DoCoMo’s

initial send-0.2 version. See the availability section for

where to find our version of the SeND userspace imple-

mentation. Future steps in the development of the user

space application will include the implementation of the

new Secure Neighbor Discovery specifications that have

been developed in the IETF Certificate and Send maIn-

tainance (CSI) working group. They are related to the

DHCPv6 and CGA interaction [8], the support of the

hash agility in Secure Neighbor Discovery [13], the sup-

port of proxy Neighbor Discovery for Secure Neighbor

Discovery [12] and the certificate management in the au-

thorization delegation discovery process [11].

5 Conclusion

This paper reasons the need for the Secure Neighbor Dis-

covery extension to counter threats to the Neighbor Dis-

covery Protocol by illustrating the set of security threats,

the protocol enhancements that counter those threats and

their implementation. It also describes our implementa-

tion of a native kernel-userspace SeND API for *BSD



operating systems.

Our prototype is compliant with the Secure Neighbor

Discovery specification, both in case of host-host sce-

narios and router-host scenarios. In case that send.ko

module is not loaded, kernel operates just as there was

no additional Secure Neighbor Discovery code involved.

We successfully overcame major drawbacks of the exist-

ing SeND implementation for FreeBSD by eliminating

the use of netgraph and Berkley Packet Filter. Our code

does not affect other ICMPv6 or IPv6 packets in any way.

We developed effective and portable solution for Secure

Neighbor Discovery, while introducing as few new code

to kernel stack as possible.

As the send.ko kernel module acts as a gateway be-

tween the network stack and the userland interface, it

will be easy to adopt the user space interface to some-

thing more fitting without the need to change the kernel

network stack again.

The current kernel work is available

in the FreeBSD Perforce depot in the

//depot/projects/soc2009/anchie_send/...

branch. The Secure Neighbor Dis-

covery application is available at

http://google-summer-of-code-2009-freebsd.

googlecode.com/files/ Ana Kukec.tar.gz.
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