Ecdysis: Open-Source DNS64 and NAT64

Simon Perreault, Jean-Philippe Dionne, and Marc Blanchet
Viagénie, Québec City, Canada

{simon.perreault, jean-philippe.dionne, marc.blanchet}@viagenie.ca

February 8, 2010

Abstract

Ecdysis is an open-source projet that is developing
open-source DNS64 and NAT64 implementations.
These two protocols are used jointly for translation
from IPv6 clients to IPv4 servers. The implemen-
tations are based on the Bind and Unbound DNS
servers for DNS64, and on Linux’s Netfilter and
OpenBSD’s pf for NAT64.

1 Introduction

IPv4 and IPv6 networks are “incompatible.” The
IETF recommendation has usually been to rely on
dual-stack deployment: have both networks coexist
until IPv6 takes over IPv4. However, IPv6 growth
has been much slower than anticipated. There-
fore, new IPv6-only deployments face an interesting
challenge, that of communicating with the predom-
inantly IPv4-only rest of the world. A similar prob-
lem is encountered when legacy IPv4-only devices
need to reach the IPv6 Internet.

Translation between IPv4 and IPv6 is one frame-
work engineered within the IETF as a solution to
the problem of IPv6 transition. The general frame-
work for IPv4/IPv6 translation is described in [4].
It also explains the background of the problem,
and some expected uses. Another document de-
scribes the translation algorithm [6]. This stateless
algorithm (one-to-one mapping between IPv4 and
TPv6 addresses) has been deployed by CERNET
and their experience is described in [9].

Given the increasing shortage of public IPv4 ad-
dresses, we will need to overload TPv4 addresses
and share them among multiple IPv6 hosts. This
is akin to the network address translation (NAT)
function that is common in today’s IPv4-only net-

works. NATG64 is the equivalent protocol for trans-
lating between IPv4 and IPv6 networks and is be-
ing developed by the IETF [7]. It makes use of
a DNS application-layer gateway (ALG) protocol,
DNS64 [8], that intercepts DNS AAAA queries sent
by IPv6 hosts, performs an A queries on the IPv4
side, and synthesizes AAAA answers directing IPv6
hosts toward the NAT64. The DNS64 and NAT64
functions are completely separate, which is the key
to understanding the superiority of NAT64/DNS64
over NAT-PT |2, 3].

The Ecdysis' project’s goal is to develop open-
source implementations of an IPv4/IPv6 gateway
that run on open-source operating systems such as
the various BSD flavours and Linux. The gateway
is comprised of two distinct modules: the DNS64
and the NAT64. The DNS64 module was devel-
oped by modifying two open-source DNS servers:
Bind and Unbound. The NAT64 module was de-
veloped by modifying pf (the firewall and NAT
code in the OpenBSD kernel, which is used also
in other BSD variants) and Netfilter (the firewall
and NAT code in the Linux kernel). As part of the
development process, stand-alone implementations
of DNS64 and NAT64 were developed for experi-
mentation purposes.

The deployment operation of an IPv4/IPv6 gate-
way need to be carefully planned and understood.
Issues such as scalability, stability, and network
management are exacerbated by the stateful nature
of the protocols involved. Some of these issues are
similar to those encountered when deploying IPv4
NAT devices, and are addressed in the same fash-
ion, but other are different. In particular, the logi-
cal separation of the DNS64 and NAT64 functions
will allow us to scale more efficiently. Also, NAT64

Thttp://ecdysis.viagenie.ca

53

54

IPv6-only network

IPVv6 Internet

IPv4 Internet

NAT64

Figure 1: Expected use case. The default NAT64 prefix, 64:ff9h::/96, is routed to the NAT64 device.
All other IPv6 traffic is routed to the default IPv6 gateway. The DNS64, which is provisioned to the
clients as their default DNS resolver, has both TPv6 and IPv4 connectivity, which it uses for reaching
authoritative DNS servers. Note that IPv6 router, DNS64, and NAT64 are logical functions and could
conceivably be co-located on the same physical machine.

builds on a better understanding of NAT provided
by years of experience. For example, it possesses
characteristics allowing peer-to-peer communica-
tion in restricted but important cases. For example,
it is expected that peer-to-peer SIP & RTP across
the IPv4/IPv6 boundary will be attainable.

2 The Protocols

Here we give a brief overview of the DNS64 and
NAT64 protocols. Please refer to Figure 1 on page
2, which illustrates an expected use case.

2.1 DNS64

In most cases, client-server connection establish-
ment starts with a DNS query. This is the basic
assumption upon which the IPv6 translation frame-
work is built: the IPv6-only client will ask its DNS
resolver for the AAAA record associated with the
server’s name.

This DNS resolver is augmented with DNS64
functionality. It first tries to resolve the AAAA
query as usual. If the result of this is not an error
but the answer section is empty, the resolver will
initiate a new A query for the same host name. If
this query succeeds and its answer section is not
empty, then the A records are converted to AAAA

records by prepending them with the NAT64 pre-
fix. This new response is then sent to the client.
Refer to Figure 2 on page 3 for an example.

Tt is important to note that DNS64 is partially in-
compatible with DNSSEC. If the client performs its
own DNSSEC validation, and has no knowledge of
the DNS64 function being performed by the server,
then the validation will fail. However, if the client
is somehow aware of the DNS64 function and knows
how to convert synthetic AAAA records back to A
records, then it may correctly validate them. Fi-
nally, the client may instead trust the server to
perform DNSSEC validation in its stead. Since the
server can do so before synthesizing AAAA records,
this is compatible with DNSSEC.

2.2 NATe64

The specification of NAT64 is covered by two docu-
ments. The first part, stateless translation between
IPv6 and IPv4 (in both directions), is described
in [6]. It is an update to the Stateless IP/ICMP
Translation Algorithm (SIIT) [1] which was also
the basis of NAT-PT. It describes how to map IPv6
header fields to and from IPv4, as well as mapping
ICMPv6 to and from ICMPv4.

Stateless translation can be used as-is when you
can allocate one IPv4 address per host. For an ex-

IPv6-only DNS64 NAT64 IPv4 Internet IPV6 Internet
Client
AAAA query
example.com | _ _AAAArecur ive resolving _
Empty answer (> ~ Arecursiveresolving .
AAAA synthesisa)
AAAA answer
64:ff9b::a.b.c.d
TCP SYN »
Source: [2001:db8::100]:x Create session
Destination: [64:ff9b::a.b.c.d]:80
L _ TCPSYN _ |
Source: 192.0.2.1:y
Destination: a.b.c.d:80
l« TCP.SYN/ACK _
Source: a.b.c.d:80
Destination: 192.0.2.1:y
- TCP SYN/ACK
Source: [64:ff9b::a.b.c.d]:80
Destination: [2001:db8::100]:x

Figure 2: Example connection establishment flow. In this case, the IPv6-only client is attempting a TCP

connection to example.com on port 80. There is no

AAAA record associated with example.com, and so

the DNS64 synthesizes one from the A record, which points to the IPv4 address a.b.c.d, by prefixing it
with the NAT64 prefix, which in this case is the defautl 64:ff9b::/96. The client then sends a TCP SYN
to 64:ff9b::a.b.c.d, port 80. The packet gets routed to the NAT64 device which creates a new session
and allocates a binding. It changes the source address that of the binding created, and converts the

IPv6 destination address to IPv4 by removing the
NAT64 does the reverse operation and forwards the
operates in the same fashion.

ample, see [9]. Stateless translation is more robust
than stateful translation because there is no state in
the network. If a network element fails, it is easy to
fail over to another without needing state synchro-
nization. Furthermore, the absence of state makes
it is easy to load-balance on multiple translators,
employ asymmetric routing, etc.

However, in many cases it is impossible to al-
locate one IPv4 address per host. In these cases
stateful translation [7] is needed to overload IPv4
addresses and have multiple IPv6-only hosts share
them. The specification is limited to three trans-
port protocols: UDP, TCP, and ICMP. Support
for other protocols will be in separate documents.
Other supporting functionality, such as an FTP
ALG [10], is also in separate documents.

It is very important to note that connection ini-
tiation is only possible from the IPv6 side to the
IPv4 side (except when statically configured oth-
erwise). This simplifying assumption is the main

prefix. When the SYN/ACK reply is received, the
IPv6 packet to the client. The rest of the connection

difference with NAT-PT, where connection initia-
tion was supported in both directions. Limiting
the direction from the IPv6 side to IPv4 allows the
complete separation between NAT64 and DNS64.
Indeed, NAT64 could be used without DNS64 if the
IPv6-only client is using another method to obtain
IPv6 addresses of IPv4 servers (e.g. static configu-
ration).

When an IPv6-only client initiates a connection,
it sends a first packet (e.g. a TCP SYN) to an
TIPv6 address contained in a prefix routed to the
NAT64 device. The default prefix is 64:ff9b::/96
(see [5]). The NATG64 device creates a new entry
in its session table and allocates a binding, which
indicates the source IPv4 address and port to use
for the IPv4 side of the connection. The IPv4 des-
tination address is extracted from the TPv6 desti-
nation address. Once the IPv4 source and desti-
nation addresses are known, the packet is trans-
lated following the stateless translation rules. It is

56

then routed and forwarded on IPv4. When packets
belonging to the same connection arrive from the
IPv4 or IPv6 side, the corresponding session entry
is looked up in the session table. Its expiration is
refreshed and its state is updated if necessary. The
packet is then translated using the source and des-
tination addresses and ports stored as part of the
session entry.
See Figure 2 on page 3 for an example.

3 DNS64 Implementations

We implemented DNS64 functionality in the Bind?
and Unbound® DNS servers.

Bind

The implementation in Bind modifies the core re-
solving state machine, namely the query_find()
function. It also introduces a new configuration
variable named dns64-prefix, which takes as ar-
gument the TPv6 prefix that will be prepended to
IPv4 addresses contained in A records in order to
synthesize AAAA records. This variable can be
used either in the global options context or in a
view context. When it is not present, the DNS64
functionality is disabled.

3.1

3.2 Unbound

Unbound’s modular architecture let us implement
DNS64 as a completely separate and self-contained
dynamically loadable module. In Unbound, mod-
ules are arranged in a chain and requests traverse
them as their resolving progresses. The usual mod-
ules are iterator.so, where the core DNS iter-
ating algorithm takes place, and validator.so,
which performs DNSSEC processing. Our module,
dns64.so, is placed in front of these two. An in-
coming request is immediately passed to the next
module in the chain. When it comes back, its sta-
tus is checked. If DNS64 processing needs to take
place, a new A request is generated and sent to
the next module in the chain. When this request
comes back, AAAA records are synthesized and the
new response is returned to the previous module in
the chain. Since we are usually the first module in

2https://www.isc.org/software/bind
3http://www.unbound.net /

the chain, this causes Unbound’s core to send the
response to the client.

Usage of the DNS64 functionality in Unbound
depends on whether dns64.so is used or not. This
is configured in unbound.conf. We also created a
new configuration variable named dns64-prefix,
which specifies the DNS64 prefix to be used.

4 NAT64 Implementations

We implemented NAT64 functionality as a stand-
alone user-space program, as a Linux module, and
as part of OpenBSD’s pf 4.

4.1 User-Space

Our user-space implementation, nat64d, uses a
tun(4) device to receive and send packets. This
interface was chosen because it is fairly portable
and is easy to use. When the program starts it
creates the interface. The user then needs to man-
ually configure IPv4 and IPv6 routing so that this
interface receives packets intended to the NAT64
translator. This is usually done with ifconfig(8)
and the exact syntax varies from one OS to another.

Our user-space implementation assumes it has
complete ownership of the IPv4 address it is con-
figured to use (address pools are for future devel-
opment). It cannot share an IPv4 address assigned
to another interface. Therefore, for most usage two
IPv4 addresses will be needed: one for the physical
interface and used to access the box, and another
used by nat64d. This design choice was made for
implementation simplicity.

The session table is implemented using red-black
trees from sys/tree.h. Acceleration using a hash
table is for future development.

When nat64d receives the SIGUSRI signal, it
prints its session table to stdout. The SIGHUP
signal causes it to flush its session table.

4.2 Linux

Our Linux implementation takes the code from the
user-space implementation and puts it in kernel-
space, in a module called nf_nat64.0. Packet in-
put using tun(4) is replaced by a Netfilter hook.

4http://www.openbsd.org/faq/pf/

N
! |
| Local
process \
| |
| |
| |
Wire —» Input ——> ‘ Output —» Wire
|)
N
o ton Stack Ty
« Straight key look-up « Reversed key look-up
and creation and creation

Figure 3: Pf processing.

Output is accomplished with a dummy nat64 inter-
face to which the translated packets are sent using
netif_rx().

4.3 OpenBSD’s pf

Adding NAT64 functionality to pf meant fighting
pre-existing assumptions in pf’s code.

Pf processes forwarded packets in two steps: in
the input direction and in the output direction (see
Figure 3 on page 5). The existing code assumes
that the packet’s address family doesn’t change as
it traverses pf. For example, ip6_input() calls
pf_test6() with the dir parameter set to PF_IN
to perform input processing, then it passes the
packet to ip6_forward(). There is no way for
pf_test6() to signal to the calling function that
the TPv6 packet has now become an IPv4 packet
and that it should call ip_forward() instead. Fur-
thermore, note that the destination address always
needs to be changed before routing happens. If we
try to change the source address in the input di-
rection (instead of the output direction as usual),
then returning packets in the same flow will match
against the state key only in the output direction,
which is too late to change the destination address.

The design that was adopted circumvents these
issues by two means:

e We completely translate packets in the input
direction, feed the translated packet back to
the main input function (either ipv4_input ()
or ip6_input()), and stop processing of the
original packet by replacing it by a null

pointer. The necessary functionality to accom-
plish this was already present and this is rather
clean.

e The state key that is created has a straight
wire key but a reversed stack key. This makes
the stack key match the wire key of return-
ing packets so that we can do the reverse pro-
cessing in the input direction (before routing)
also. These special “half-reversed” state keys
are recognized when the address family of the
wire key doesn’t equal that of the stack key.
It was necessary to add such checks in various
locations in pf’s code.

The syntax of NAT64 rules in pf.conf is identical
to that of regular NAT rule, except that the “nat64”
action is used instead. For example:

nat64 from any to 64:ff9b::/96 -> (em0)

It is planned to also create an “rdr64” action for
statically mapping IPv4 address-port combinations
to IPv6.

4.4 Comparison

The user-space implementation tries to be as close
to the IETF specification as possible. Since the
Linux implementation reuses this code, it has the
same behaviour. In contrast, the pfimplementation
is built on top of pf’s already existing NAT code,
which behaves differently. This has both advan-
tages and disadvantages. For example, the IETF

58

specification mandates endpoint-independent map-
ping behaviour, which facilitates NAT traversal.
On the other hand, it greatly reduces scalability.
Since pf uses port- and address-dependent map-
ping, it can make more efficient use of IPv4 ad-
dresses at the cost of making NAT traversal harder.

Another difference is the level of integration. The
Linux implementation is mostly separate from the
existing Netfilter connection tracking code. The
pf implementation is very tightly integrated, which
makes it benefit automatically from compatibility
with other parts of the system such as user-space
tools (e.g. pfctl(8), systat(l)) and state syn-
chronization using pfsync.

5 Operational Issues

When deploying NAT in medium to large networks,
there are usually two concerns that need to be ad-
dressed: fail-over and load balancing. These also
apply to NAT64.

5.1 Fail-Over

The strategy is exactly the same as for usual NAT:
replicate the state on a warm backup and automat-
ically direct traffic to it when the main box fails.
This is accomplished on OpenBSD using pfsync and
CARP. These methods are also applicable with our
NAT64 implementation.

5.2 Load Balancing

The separation of DNS64 and NAT64 functions en-
ables a very powerful form of load-balancing.

FEach NAT64 device, or pair of devices in a fail-
over configuration, is assigned a different NAT64
prefix and pool of IPv4 addresses. The multiple
prefixes are configured in the DNS64 which picks
one of them when synthesizing AAAA records.
Many strategies for choosing a prefix can be en-
visaged: round-robin, random, based on the source
address of the client, using feedback from polling
the load on the NAT64 devices, etc.

Our DNS64 patches currently do not support this
feature. It is planned for future work.

5.3 Lessons Learned

While running NAT64 we have encountered sur-
prising issues. For example, things that work be-
hind an IPv4 NAT do not necessarily also work
from behind a NAT64. This happens when a con-
nection attempt is made directly to an IPv4 ad-
dress, without using the DNS. For example, some
web pages use IPv4 address literals in hyperlinks.
To make these links work, one solution is to use an
IPv6-enabled HTTP proxy. An clever hack using
regular expressions is described in [11].

Another problem encountered was with authori-
tative DNS servers replying with an error to AAAA
queries but normally to A queries. Originally,
the DNS64 protocol did not attempt to synthesize
records when any error was encountered. Since we
reported this problem to the protocol authors, syn-
thesis is attempted for all DNS errors except NX-
DOMAIN.

Finally, all protocols that transport IPv4 ad-
dresses in their payload cannot be assumed to work
with NAT64. Besides the usual suspects (FTP,
SIP, etc.), we encountered a few unexpected ones.
For example, a very popular instant-chat proto-
col redirects the client to a server identified by an
IPv4 address as soon as the client tries to register.
This makes the program idle in the “Connecting...”
phase.

There are a few minor issues with client operat-
ing systems when they are configured in IPv6-only
mode. For example, we have seen Firefox think
it is not connected and enter the “Offline” mode
automatically. These are minor issues in that the
functionality is still present but users may stumble
on rough corners

Overall, NAT64 is very usable for the common
“web and email” style. Some remaining issues,
such as the instant-chat program example discussed
above, can be mitigated fairly easily by developing
a simple ALG until the application developers fix
their bug. Others, such as SIP usage, require much
more ingenuity.

6 Conclusion
The Ecdysis project has developed multiple open-

source DNS64 and NAT64 implementations. They
are available at http://ecdysis.viagenie.ca. Our ul-

timate goal is for the patches to evolve and even-
tually be accepted for inclusion by the Bind, Un-
bound, Linux, and OpenBSD projects.

With this code, you can now remove IPv4 from
your network, go IPv6-only, and still be able to talk
to the rest of the world. That’s one less barrier in
the way of IPv6 adoption.

Acknowledgements

This work was funded by the NLnet Foundation
and Viagénie.

References

[1] Nordmark, E., RFC2765: Stateless IP/ICMP
Translation Algorithm (SIIT), February 2000.

[2] Tsirtsis, G. and P. Srisuresh, RFC2766: Net-
work Address Translation - Protocol Transla-
tion (NAT-PT), February 2000.

Aoun, C. and E. Davies, RFC/966: Reasons to
Mowe the Network Address Translator — Pro-
tocol Translator (NAT-PT) to Historic Status,
July 2007.

13l

Baker, F., X. Li, C. Bao, and K. Yin,
draft-ietf-behave-vjv6-framework-05: Frame-
work for IPv4/IPv6 Translation, January
2010.

Huitema, C., C. Bao, M. Bagnulo, M. Bou-
cadair, X. Li, draft-ietf-behave-address-format-
04: IPv6 Addressing of IPvj/IPv6 Transla-
tors, January 2010.

Li, X., C. Bao, and F. Baker, draft-ietf-
behave-v6v4-zlate-06: IP/ICMP Translation
Algorithm, January 2010.

Bagnulo, M., P. Matthews, and I. van Bei-
jnum, draft-ietf-behave-v6vj-zlate-stateful-08:
NAT6/: Network Address and Protocol Trans-
lation from IPv6 Clients to IPv4 Servers, Jan-
uary 2010.

Bagnulo, M., A. Sullivan, P. Matthews, and
I. van Beijnum, draft-ietf-behave-dns64-05:
DNS6/: DNS extensions for Network Address
Translation from IPv6 Clients to IPvj Servers,
December 2009.

[9] Li, X., C. Bao, and F. Baker, draft-zli-behave-
ii-07: IP/ICMP Translation Algorithm, Jan-
uary 2010.

[10] van Beijnum, 1., draft-ietf-behave-ftp64-00:
IPv6-to-1Pv4 translation FTP considerations,

December 2009.

[11] Wing, D., draft-wing-behave-http-ip-address-
literals-01: Coping with IP Address Literals in
HTTP URIs with IPv6/IPvj Translators, Oc-

tober 2009.

59

