
Wireless Mesh Networks under FreeBSD

Rui Paulo
rpaulo@FreeBSD.org

The FreeBSD Project
AsiaBSDCon 2010 - Tokyo, Japan

Abstract
With the advent of low cost wireless chipsets,
wireless mesh networks became much more at-
tractive for both companies, governments, and
the general consumer. Wireless mesh networks
are being used extensively since the popular-
ization of the 802.11 wireless technologies, but
usually they worked with the help of layer 3
routing technologies. Since 802.11 didn’t pro-
vide any kind of support for wireless mesh net-
works, in 2004, IEEE created the Task Group s
(TGs) to develop a new amendment to 802.11
which would define the operation of a wireless
mesh network using existing 802.11 hardware
and having a routing protocol work at layer 2.
Later, the amendment also included provisions
for mesh authentication, encryption, link man-
agement, bridging mesh networks with other
types of networks, and channel reservation.
This paper will talk about the FreeBSD imple-
mentation of 802.11s that’s available in version
8.0 and beyond. This work was sponsored by
The FreeBSD Foundation.

1 Introduction
A wireless mesh is a group of inter-networked
wireless nodes which forward messages be-
tween themselves to create a mesh network.
A wireless mesh network is similar to a
wired/wireless network, but with some big ad-
vantages, namely: automatic global connectiv-
ity (if one mesh node is connected to the In-
ternet, all the others mesh nodes can take ad-
vantage of this without any additional admin-

istration procedure), no single point of failure,
it’s a self healing network and each mesh node
is able to do path discovery. Every wireless
node has the ability to route packets, so the net-
work software on each node runs one instance
of the routing protocol software. Regarding to
routing protocols, there are dozens (almost one
hundred) of different routing protocols avail-
able today that can be used on wireless mesh
networks. This number clearly shows that the
best routing protocol to use depends on the
conditions, the size and the usage scenario of
the wireless mesh network.

Wireless mesh networks are becoming in-
creasingly popular today. Notable examples of
wireless mesh networks are: Mesh Dynamic’s
Military Mesh Network[5] which allows the
military forces to communicate without any
central node; electricity meters are being de-
ployed with wireless mesh technologies so they
can communicate their readings from one to
another and finally reaching the the central sta-
tion; the Iridium satellite constellation has 66
satellites (excluding spares) that form a mesh
network and provide voice and data coverage
for the entire Earth’s surface; the OLPC[6]
project builds a laptop suitable for children that
has mesh capabilities built in, allowing its users
to reach the Internet in places where it would
be very hard to do so; the Sonos Multi-Room
Music System creates a wireless mesh network
so you can listen to music in every room of
your home. There’s a high probability that
your everyday data can be traveling through a



wireless mesh network without you knowing it.
In 2004, IEEE created the Task Group s

(TGs)[3] to develop a new amendment to
802.11 which would define the operation of a
wireless mesh network using existing 802.11
hardware. In 2008, Linux gained initial sup-
port for 802.11s[1]. In 2009, FreeBSD also
gained initial support for 802.11s[2] and in late
2009, interoperability problems were resolved
between Linux and FreeBSD. These problems
existed because Linux had been following an
early version of the draft specification while
FreeBSD used a more recent one and they were
incompatible frame format wise.

This paper will describe the 802.11s amend-
ment and the FreeBSD implementation.

2 802.11s overview
A mesh network based on 802.11s is called a
MBSS, Mesh Basic Service Set. MBSS net-
works are identified by a mesh ID, similar to
the well known SSID (Service Set ID) used on
regular 802.11 networks.

All the mesh nodes must be using the same
radio channel. If one wants to collocate a
MBSS network and a BSS network (access
point), using non overlapping channels is a
good idea. Even better is using the 2.4Ghz
band for the one network and the 5Ghz band
for the other network, if the local radio regula-
tions allow this.

After a node setups itself and starts broad-
casting beacons, it will passively listen for bea-
cons from other mesh nodes. The beacons con-
tain a mesh configuration information element
that announces which routing protocol is being
used, which authentication protocol is required
to peer, which protocol measures the link met-
ric and other mesh parameters. If the mesh
ID and the mesh configuration parameters in a
beacon from another mesh node match the ones
we are using, we can initiate peering with this
mesh node. Peering allows the mesh network
to accept a new node in its network topology.

This new node usually also forwards packets,
but this behavior can be disabled. Peering is
a 4-way handshake between two mesh nodes.
Each mesh node will have a peering ID that it
will share with the other mesh node. These IDs
are only meaningful on the context of peering.
Upon successful peering, the new mesh node
is now allowed to exchange packets with the
other mesh node.

Routing protocols on 802.11s work at the
OSI layer 2, in contrast with many of the cur-
rent ad-hoc wireless routing protocols which
work at the OSI layer 3. The routing proto-
col to use is agreed between mesh nodes and it
must be the same for all the mesh nodes. The
802.11s standard requires implementations to
support the HWMP (Hybrid Wireless Mesh
Protocol), but is extensible enough that you can
even implement your own wireless mesh rout-
ing protocol. The “Hybrid” name comes from
the fact that HWMP works both in on-demand
and proactive modes. When in on-demand
mode, HWMP is pretty similar to AODV (Ad-
Hoc On-Demand Distance Vector) which is
a routing protocol used extensively over the
years on MANETs (Mobile Ad-Hoc Networks)
and other types of wireless ad-hoc networks.
AODV (and HWMP) work by sending path re-
quests when a destination is not found on the
routing table. The destination node, if reach-
able, will send back a path reply. This path ex-
change will come through all the possible paths
between the source and the destination nodes,
but the two nodes will only pick the best path
(heuristics are based on the number of hops
and the path metric). On the proactive mode,
a mesh node using HWMP is continuously try-
ing to find paths to all the other mesh nodes
by broadcasting path request packets. A node
setup to proactively find mesh paths is usually
called a root node. The advantage of this mode
is that nearby nodes that just joined the mesh
can find a path to all mesh nodes by contacting
the root node. Although this path setup may be
faster, the path it finds may not be the best. The



best path will eventually be found because the
reactive mode is being used at the same time.
Count-to-infinity problems are avoided using
sequence numbers. Radio Aware Optimized
Link State Routing Protocol (RA-OLSR) is an
example of another routing protocol that can
be used with 802.11s. All of this routing hap-
pens using 802.11 management action frames
and it’s transparent the user.

802.11s networks can be bridged with other
wireless networks or with wired networks. The
node that bridges a 802.11s network with an-
other network is called a Portal. The job of the
Portal is to proxy traffic and to announce itself
on the 802.11s network.

All this happens without major frame format
changes, so the current 802.11 networks won’t
be disturbed by the present of a 802.11s net-
work. In order to cope with the necessary ad-
dition of a Mesh Header in data packets, this
header was not added to the MAC header, but
instead it was added to the frame body. 802.11s
networks will expect this header to be present
but regular 802.11 networks will discard its
contents. This new field includes some mesh
flags, a mesh TTL, a mesh sequence number,
and mesh address extensions. These are used
respectively for handing path loops or count-
to-infinity problems, discarding duplicate uni-
cast/multicast/broadcast frames, and for exter-
nal address support.

In order to avoid contention on the wireless
medium, the 802.11s defines a controlled chan-
nel access mode (Mesh Coordinated Chan-
nel Access) that restricts the usage of the
wireless medium to specific times for each
wireless mesh node. This means that, when
transmitting, wireless mesh nodes will experi-
ence much lower contention. In contrast with
the regular CSMA/CA mode used on regu-
lar 802.11 networks, this gives much better
network performance. This is not yet imple-
mented in FreeBSD.

The 802.11s amendment is under draft status
and the final version is expected sometime in

2010 or 2011.

3 Implementation details
The FreeBSD implementation of 802.11s
started in April 2009 and was sponsored by
The FreeBSD Foundation[7]. The code is
around new 4500 LOC including the rout-
ing protocol (HWMP) and was committed to
the FreeBSD Subversion repository in July the
same year. The project had the following goals:

• Implement a mesh VAP;
• Implement mesh peering;
• Implement HWMP;

Encryption and authentication were pur-
posely left off, but will be implemented in the
future.

We extended the net80211 protocol
stack to include mesh networking sup-
port. The source code to support most
of the wireless mesh networking is under
sys/net80211/ieee80211_mesh.c and
the source code that implements HWMP is
under sys/net80211/ieee80211_hwmp.c.
Every wireless driver must have small modifi-
cations in order to support mesh networks. As
a rule of thumb, any card that can operate as
an access point (hostap) can also operate as a
mesh node.

As we started the development on the
FreeBSD 8.0 code base, we could take advan-
tage of the virtual access point (VAP) support.
This functionality allows the user to create
several wireless system interfaces with just
one physical network interface (one radio),
allowing the collocation of one mesh interface
and one access-point interface using one
wireless card. The most significant drawback
is that they must operate on the same channel,
degrading network performance. In order to
create a mesh VAP, the root user must type:
ifconfig wlan0 create wlandev ath0

wlanmode mesh, provided that ath0 is
the parent network device. After that, the
user should pick a channel and a mesh ID:



ifconfig wlan0 channel 1 meshid

freebsd-mesh up. At this stage, the
interface is operational.

Whenever a user requests a mesh VAP, the
mesh code will initialize the necessary struc-
tures to create one. After that, beacons will
begin to be transmitted. If there are other
mesh nodes on the same channel and the mesh
parameters (mesh ID and mesh configuration)
match our own configuration we are ready to
start peering. When peering, each mesh node
sends one “peer link open” action frame and
one “peer link confirm” action frame. When
the link is meant to be terminated, the mesh
node is supposed to send a “peer link close”
action frame. The protocol defines a detailed
FSM but explaining it is out of the scope of
this paper. More information can be found on
the 802.11s amendment.

Peering handling source code is located at
ieee80211_mesh.c. On FreeBSD, you can
list the mesh node peers with the command:
ifconfig wlan0 list sta.

The mesh code is also responsible for for-
warding packets and we did this by chang-
ing the mesh_input() function that checks
if the data packet is supposed to be for-
warded. mesh_input() is a large function
that deals with many details of the mesh pro-
tocol. The function that injects a forwarded
packet (mesh_forward()) asks the routing
module which is the next hop for this packet.
If the packet was forwarded, we don’t pass it
to bpf(4), otherwise pass it to bpf(4) and
deliver it to the next layer protocol. Finally, we
should note that all forwarding takes place in-
side the kernel.

If you want to understand the protocol
packet format more clearly, we highly recom-
mend installing Wireshark[8] with the 802.11s
patches[9].

3.1 Routing implementation de-
tails

The routing code finds paths on the mesh net-
work. Whenever a data packet reaches our in-
put function and that function calls the routing
code, we need to deliver the packet to the next
hop if we know which node is the next hop,
or we need to find a path and queue the data
packet.

Mesh 
STA 1

Mesh 
STA 3

Mesh 
STA 5

Mesh 
STA 6

Mesh 
STA 4

To find a path with HWMP we broadcast an
802.11 action frame containing the Path Re-
quest (PREQ) information element. This ele-
ment contains the source address, the destina-
tion address, a sequence number, a TTL and
HWMP flags (discussion about the flags is out-
side the scope of this paper). If the message
reaches a node that’s the destination address it
will send back a 802.11 action frame contain-
ing a Path Reply (PREP) information element.
This frame is now unicast and goes through the
same intermediate node as the PREQ. When
the PREP reaches the source address a bi-
directional path is established and the inter-
mediate nodes will also have a path to both
the source and the destination addresses. Data
transmission can now begin and we dequeue
the previously queued packets.

When a peer link goes down, all the nodes
on the mesh network must be informed so that



they can updated the routing table. HWMP
accomplishes this by broadcasting an action
frame containing the Path Error (PERR) in-
formation element. Intermediate nodes will
receive this management frame, update their
routing tables and re-broadcast the packet if
necessary.

Since each HWMP message has a sequence
number associated, we can discard duplicates
and refrain doing any action (parse and/or for-
ward) on packets that we have processed previ-
ously.

On FreeBSD, you can inspect the
mesh routing table with the command:
ifconfig wlan0 list mesh.

3.2 Implementing your own rout-
ing protocol

As we already mentioned, the FreeBSD
code is modular enough that you can im-
plement your own routing protocol. To
achieve this, you need to initialize your own
struct ieee80211_mesh_proto_path
and then call
ieee80211_mesh_register_proto_path().
The ieee80211_mesh_proto_path
structure is detailed below. For brevity we
omitted function parameters.

struct ieee80211_mesh_proto_path {
uint8_t mpp_active;
char mpp_descr[...];
uint8_t mpp_ie;
sutruct ieee80211_node *

(*mpp_discover)(...);
void (*mpp_peerdown)(...);
void (*mpp_vattach)(...);
void (*mpp_vdetach)(...);
int (*mpp_newstate)(...);
const size_t

mpp_privlen;
int mpp_inact;

};

The most important elements of this struc-
ture are:

• mpp_descr which describes the protocol
name;

• mpp_ie which defines the protocol num-
ber included on the mesh configuration in-
formation element (IE);

• mpp_discover is a callback that should
return a pointer to the next hop of a given
destination address;

• mpp_peerdown is a callback allows
net80211 to report to your routing algo-
rithm that a neighbor mesh node (peer)
disconnected itself from the mesh net-
work;

• mpp_vattach, mpp_vdetach,
mpp_newstate are callbacks that pro-
vide initialization, de-initialization and
state change notifications, respectively;

4 Further work

The remaining items required to fully support
802.11s are:

• finish the “external address” support;
• implement authentication and encryption;
• implement congestion signaling;
• implement the neighbor offset protocol;
• implement channel reservation;

As the standard changes volatility regarding
to these items, we expect to start working on
their implementation when the draft standard
reaches the final development phases.

References
[1] 802.11s Linux implementation http://

www.open80211s.org

[2] 802.11s Wireless Mesh Network-
ing - FreeBSD Wiki http:
//wiki.freebsd.org/WifiMesh

[3] Status of Project IEEE 802.11s - Mesh
Networking http://www.ieee802.
org/11/Reports/tgs update.
htm



[4] RFC 3561 - Ad hoc On-Demand Dis-
tance Vector (AODV) Routing http://
tools.ietf.org/html/rfc3561

[5] Robust Mesh Networks for Mil-
itary and Public Safey http:
//www.meshdynamics.com/
military-mesh-networks.html

[6] One Laptop Per Child (OLPC) http://
laptop.org/

[7] The FreeBSD Foundation http:
//www.thefreebsdfoundation.
org/

[8] Wireshark network protocol analyzer
http://www.wireshark.org/

[9] Open80211s Wireshark patches
http://o11s.org/patches/
wireshark/




