
Porting HPC Tools to FreeBSD

Brooks Davis
The Aerospace Corporation

El Segundo, CA
brooks@aero.org

Abstract

Since 2001 we have used FreeBSD as a high perfor-
mance computing (HPC) cluster operating system. In
the process we have ported a number of HPC tools in-
cluding Ganglia, Globus, Open MPI, and Sun Grid
Engine. In this paper we discuss the process of port-
ing these types of applications and issues encountered
while maintaining these tools. In addition to general
issues of porting code from one Unix-like operating
system to another, there are several types of porting
common to many HPC tools which we will explore.
Beyond porting, we will discuss how the ports collec-
tion aids our use of HPC applications and ways we
think overall integration could be improved.

1 Introduction

At The Aerospace Corporation we have designed,
built, and operated a FreeBSD based HPC cluster
since 2001[Davis]. Figure 1 shows the Fellowship clus-
ter in it’s current form with 352 dual processor nodes.
In the process of building and running Fellowship we
have ported a number of open source HPC tools to
FreeBSD. In this paper we discuss the process of port-
ing them, issues we encountered, and a few pet peeves
about application portability.

We begin with an overview of the porting of three
tools: Sun Grid Engine—also known as SGE—a batch
job manager; the Ganglia monitoring system, a clus-
ter/grid monitoring tool; and Open MPI, a leading im-
plementation of the Message Passing Interface which
is an API for message based parallel programming.
After discussing these tools we review a number of
general portability issues and possible remedies for
FreeBSD.

We hope to demonstrate that porting HPC tools is
straight-forward and encourage others to join the ef-

c©2010 The Aerospace Corporation.
All trademarks, service marks, and trade names are the
property of their respective owners.

Figure 1: Fellowship Circa February 2007

fort to port more tools. We also want to encourage
developers to think of ways to make FreeBSD an eas-
ier porting target.

2 Experiences Porting Applications

2.1 Ganglia

The Ganglia monitoring system[Massie]—usually re-
ferred to as Ganglia—is a cluster and grid monitor-
ing tool that provides current and historical data on
the status of a cluster or collection of systems. The
data includes CPU count, CPU utilization, mem-
ory use, and network I/O among others. Ganglia
is used on systems ranging from small clusters to
PlanetLab[PlanetLab], a globally distributed network
of over 1000 nodes at nearly 500 sites. Beyond HPC
applications Ganglia is used to monitor web farms or
even desktop computing resources.

Ganglia’s architecture consists of monitoring daemons
(gmond) on each node that send periodic updates of
various metrics to a central collector daemon (gmetad)
that stores the results in a set of Round Robin
Databases[RRDtool]. The metrics cover many aspects

of system configuration and load, and may either be
fixed (per-boot) or vary with time.

Core metric providers are implemenated as functions
in the monitoring daemon that return string or nu-
meric values. In early versions of Ganglia the set of
metrics was fixed at compile time. In more recent ver-
sions, it is configured at runtime and pluggable metric
providers are supported including Python modules.

The process we used to port metrics is simple. First,
we checked the code for other operating systems to
determine what the metric means. Then we figured
out a way to use standard tools such as top, ps, proc-
stat, or sysctl to extract that information from the
system. Once appropriate tools were identified, we
examined their source code to determine how they
retrieved the information in question and used that
information along with man pages to write an appro-
priate metric implementation. In many cases it was
possible to copy the code directly from FreeBSD util-
ities along with another copyright statement and li-
cense block because Ganglia is BSD licensed.

One of the simplest metrics to port was cpu num
which is the number of CPU cores in a machine. List-
ing 1 shows the entire implementation and illustrates
the basics of Ganglia metric implementation. Each
metric is implemented as a function that returns a
g val t structure representing the current value of the
metric.

Listing 1: cpu num func()

g v a l t
cpu num func (void)
{

g v a l t va l ;
int ncpu ;
s i z e t l en = s izeof (int) ;
i f (sysct lbyname (”hw . ncpu” , &ncpu ,
&len , NULL, 0) == −1 | | ! l en)

ncpu = 1 ;

va l . u int16 = ncpu ;
return va l ;

}

The swap total and swap free metrics are more com-
plex metrics and cover several interesting cases includ-
ing the use of the kvm[FreeBSD-kvm] interface and
supporting multiple interfaces for cross platform sup-
port. In porting them we observed that users and
administrators can obtain swap information from the
swapinfo(1) command[FreeBSD-pstat]. We dug into
the code and determined that it used kvm to access
the data if called on a coredump and a sysctl if not.
However, when we first ported Ganglia, FreeBSD 4
did not support the sysctl interface so we supported

both sysctl and kvm methods because the sysctl in-
terface allowed us to run Ganglia without ever being
root, but the kvm interface was needed since we need
to support FreeBSD 4.x. As in Listing 2 our imple-
mentation probes at runtime and prefers the sysctl
interface where available.

Listing 2: Excerpts from metric init()
g v a l t
m e t r i c i n i t (void)
{

g v a l t va l ;

mibswap size = MIB SWAPINFO SIZE ;
i f (sysct lnametomib (”vm. swap in fo ” ,
mibswap , &mibswap size) == −1) {
kd = kvm open (NULL, NULL,
NULL, O RDONLY,
” me t r i c i n i t () ”) ;

} else {
kd = kvm open (PATH DEVNULL,
NULL, NULL, O RDONLY,
” me t r i c i n i t () ”) ;

use vm swap info = 1 ;
}
page s i z e = ge tpag e s i z e () ;
<...>
va l . in t32 = SYNAPSE SUCCESS;
return va l ;

}

The core of the swap total implementation shown in
Listing 3 uses the result of the probe in metric init ()

to determine how to retrieve the amount of swap used
using sysctl or kvm. In the sysctl case, we retrieve
information from each individual swap device and to-
tal them where the kvm interface provides a direct
total. There are a couple other interesting things of
note here. First, Ganglia expects swap size to be a
floating point number of KiB. Variants of this are
common in Ganglia due to the desire to represent
large sizes identically on all machines. Second, is the
XSWDEV VERSION line. This points out a problem
with version numbers in binary interfaces. They are
good in principle, but clients need to know about the
new version to do anything with it so in practice they
do little to help provide ABI stability. In this case we
have no choice but to reject versions we do not under-
stand so existing binaries would necessarily be broken
if this were changed.

Listing 3: Excerpts from swap total func()
i f (use vm swap info) {

for (n = 0 ; ; ++n) {
mibswap [mibswap size] = n ;
s i z e = s izeof (xsw) ;
i f (s y s c t l (mibswap ,
mibswap size + 1 , &xsw ,
&s i z e , NULL, 0) == −1)

break ;
i f (xsw . xsw vers ion != XSWDEV VERSION)
return va l ;
totswap += xsw . xsw nblks ;

}
} else i f (kd != NULL) {

n = kvm getswapinfo (kd , swap , 1 , 0) ;
i f (n < 0 | | swap [0] . k sw to ta l == 0)

va l . f = 0 ;
totswap = swap [0] . k sw to ta l ;

}
va l . f = totswap ∗ (page s i z e / 1024) ;

The Ganglia metrics for memory use were some of
the hardest to port and some of the ones we are
least satisfied with overall. The problem stems from
the fact that the different virtual memory systems in
different operating systems use vastly different sets
of accounting buckets. The Ganglia metrics “total”,
“buffers”, “cached”, “free”, and “shared” appear to be
derived from values that are easy to obtain on Linux.
Unfortunately, they do not match any of the mem-
ory use statistics provided by FreeBSD. For exam-
ple top shows “active”, “inactive”, “wired”, “cache”,
“buffers”, and “free” memory, where “free” memory
is always a small number on a system that has been
up and active for some time since the VM system sees
little need to waste CPU time freeing memory that
might be used again. As the saying goes, free memory
is wasted memory in the operating system. Even to-
tal memory is complicated. For example we have both
hw.physmem which is the actual amount of memory in
the system (modulo 32-bit limits on 32-bit, non-PAE
system) and hw.realmem, the memory that it is pos-
sible to use. Table 1 shows the set of mappings we
chose, but this is far from optimal.

Over all Ganglia was a straight forward package to
port. Supporting multiple FreeBSD versions required
some effort, but most metrics were easy to support.

2.2 Sun Grid Engine

Sun Grid Engine (SGE)[SGE] is a leading open source
batch scheduler and resource manager. The other
credible option is Torque, a fork of OpenPBS. Prior

Ganglia Metric sysctl Used in Port
mem total hw.physmem
mem buffers vfs.bufspace
mem cached vm.stats.vm.v cache count
mem free vm.stats.vm.v free count
mem shared 0

Table 1: Ganglia Metric to sysctl Mappings

to Sun’s purchase of Grid Engine and the subsequent
open source release, we had been attempting to get
OpenPBS to work in our environment, but it was
never stable for us (or many others based on traffic
on the on the OpenPBS mailing lists). When SGE
was released as open source in 2001 and Ron Chen
started a port we leap at the chance to try something
else and completed the port.

The first step in porting SGE was figuring out the
build system. It is a unique and complex system
consisting of a nearly three-thousand line csh script
named aimk (not be confused with the aimk build tool
from PVM[PVM]). Within the script, each pair of
operating system and architecture has a separate con-
figuration section. The script invokes a dependency
generator, a variety of make instances, configure in
some cases, and in recent versions Apache Ant. His-
torically configure was prerun for each platform and
thus configure was not actually run by aimk.

In the process of porting the build system we intro-
duced a number of innovations to reduce the complex-
ity of adding new platforms. Most of these were re-
lated to adding support for multi-platform builds since
we knew from the start we wanted to support at least
FreeBSD i386 and amd64. We wanted to be able to
support new architectures with little or no additional
change to the build system. To that end we added a
single configuration section for FreeBSD architectures
and changed the architecture naming so that FreeB-
SDs platform string is always fbsd-arch where arch is
the machine architecture as given by uname -m. We
also augmented the build system so that for portions
of the source tree that depend on configure output, we
run configure if no pregenerated output is available.

Because the build system requires many steps to gen-
erate a working system, we also created a FreeBSD
port[Ports] early on so we can build the system re-
peatably with a reasonable number of command invo-
cations. This greatly simplified the process of testing
new features.

One section we have not yet ported is the code to build
the Java interfaces. Java use started with an interface
to the DRMAA job submission interface, but now in-
cludes a GUI installer. At one point we were able to
harvest Java components from the pre-build binaries,
but those are no longer available under an appropri-
ate license so we have disabled all Java support in the
port.

After the build system, we tackled a variety of porta-
bility definitions. Early versions of Grid Engine were
ported to systems that significantly predate modern
versions of the C standard such as C99. As a result
there are several sets of type definitions for fixed width

integers as well as a number of definitions to handle
differences in handling required to print a number of
standard Unix typedefs like uid t, gid t, and pid t.
For example these are some of the FreeBSD specific
definitions are shown in Listing 4.

Listing 4: cpu num func()

#define u long32 u in t 32 t
#define u id t fmt ”%u”
#define g i d t fmt ”%u”
#define p id t fmt ”%d”

A fair bit of this code could be simplified today, but
doing so would probably require removing support for
some older systems like Cray and HP-UX and the de-
velopers have not been willing to do so.

Like Ganglia, SGE collects a number of metrics from
the execution daemons on each node and uses those
results to make job placement decisions. The imple-
mentation is not as neatly divided into metric func-
tions, but the basic principles of porting metrics are
the same so we will not cover them here. We found
the easiest way to find them was to search for LINUX

in the source tree to find all the things Linux had to
implement. The Darwin and NetBSD ports seem to
have searched for FREEBSD to aid their porting.

One place where SGEs metrics differ from Ganglia
is that SGE wants to track resource use by all the
processes that make up a job. This is done in the
Portable Data Collector sub system. On Irix, there is
a mechanism for attaching job IDs to processes and
then querying resource use for the process and all its
children (as well as sending signals to the group). This
feature does not exist on most other platforms so SGE
implements a clever hack to achieve a similar effect.
The trick is that they allocate an otherwise unused
group on each node and then add it to the group list
for each process. Since the group list is copied to each
child on fork() and ordinary users can not adjust their
group list this provides a tag which can be used to
detect the processes that make up a job. When SGE
wants to determine the cumulative resource use of a
job, it walks the process table using kvm and totals all
resource use. Recent changes to FreeBSD (available in
7.3 and 8.0) will allow the use of sysctl to perform this
task, but that will not be a portable option for some
time.

The SGE port took some significant work and still
could use some more polish, but the individual pieces
were relatively simple to port and the current result
is quite useful.

2.3 Open MPI

Open MPI[Open MPI] is a leading open source im-
plementation of the Message Passing Interface[MPI].
MPI is the primary interface for building message
passing parallel application. These are applications
where multiple process coordinate their computations
with messages. MPI hides the details of the under-
lying network beneath a common API. Open MPI is
also the basis of commercial toolkits such as Sun’s
HPC toolkit.

Overal, Open MPI was one of the easiest ports we
have made. The code is highly modular with exten-
sive use of autoconf scripts to detect features. It is
clear the development team has taken to heart the
historical need for portability in HPC code, especially
middleware. The one feature we needed in the initial
port was the backtrac() and backtrac symbols() func-
tions glibc implements. Fortunately the devel/libex-
ecinfo port already provides that functionality so we
simply added the necessary autoconf bits to do detect
it and we had a working port.

One optional feature we have not yet ported is CPU
affinity. The Open MPI team created the Portable
Linux Processor Affinity (PLPA) framework to deal
with ABI issues in the Linux CPU affinity system
calls. We could easily support the same interface with-
out the tricks they play in the name of binary com-
patibility, but have not done so yet. PLPA has been
superseded in Open MPI by a combination of its func-
tionality and libtopology[libtopology] in a new pack-
age called Portable Hardware Locality (hwloc), but
porting PLPA may still be useful because it has been
incorporated into recent SGE releases.

3 Porting Issues

3.1 IPv6 Socket Behavior

One of the more annoying porting issues we encoun-
tered in Ganglia was with IPv6 support. KAME de-
rived IPv6 stacks violate RFC 2553 and disallow IPv4
mapped IPv6 sockets from receiving IPv4 data and in-
stead require two sockets to be opened. This is done
for relatively well justified security reasons[Metz], but
can be a significant portability issue. When Gan-
glia introduced IPv6 support they did so using the
Apache Portable Runtime[APR] which did not un-
derstand this issue. As a result, IPv6 support was
disabled on FreeBSD for some time. After many dis-
cussions, Ganglia was modified to open two sockets as

required under FreeBSD.

Given that code tends to expect this behavior to work
and that changes to the RFCs have not been forthcom-
ing, we think the BSD default should be reevaluated.

3.2 Signal Handling

Another interesting portability issue we have encoun-
tered was with signal handlers. At some point the
SGE developers fixed some bugs by adding persistent
signal handlers. Unfortunately, they used the easy
to use, but not entirely portable sigset () function.
POSIX defines the sigset () function, but FreeBSD
does not yet implement it. In practice our imple-
mentation of signal () is equivalent to sigset (), but
POSIX compliant implementations are not. At the
time we were able to persuade them to switch all in-
stances of sigset () or signal () to sigaction () which is
well defined, but has the unfortunate characteristic of
requiring multiple lines of code to replace each simple
signal () or sigset () call. Since then further sigset ()

calls have been introduced.

The overall state of affairs with respect to signal han-
dling is a mess. This quote from Jim Frost[Frost] sums
up the situation:

To make certain that no one could write an
easily portable application, the POSIX com-
mittee added yet another signal handling en-
vironment which is supposed to be a superset
of BSD and both System-V environments.

The POSIX sigaction () function is well defined, but
too hard to use. FreeBSD needs to follow NetBSD
and implement sigset () and related functions.

3.3 Schema Conflicts

When porting Ganglia one of the more vexing issues
we ran into was matching the Linux derived schema
to represent memory use with the available metrics in
FreeBSD. This is a common problem in monitoring
systems, some other examples include: Network pro-
tocol statistics where different implementations may
present much more or less information or present the
same information is different ways. Determining the
disk space used or available on disks and wanting to
distinguish between local, remote, and pseudo file sys-
tems. Programs tend to end up with hard coded lists
of local file system types. This scales poorly and fails
to answer questions like, “Are UFS file systems on a
SAN local or remote?”

As porters there often is little we can do about an
existing schema. The best we can do is encourage
standard and rational schemas where possible. A
good source of well though out schemas is SNMP
MIBs[RFC3411].

3.4 Lack of Good Interfaces

One final general portability issue is a lack of good in-
terfaces to some operating system data. For example
an SGE port would have been much simpler if there
were a way to track the resource of a process and all
its children and to send signals to all of them such
as the Irix jid t . An interface that does not require
access to kernel memory is now available, but is not
particularly efficient. Another program that suffers
from these problems is lsof[Abell] which currently ac-
cesses kernel memory directly to retrieve all manner
of file handle related data. As a result it breaks on
a regular basis when kernel developers move things
around. Creating proper interfaces to these sorts of
data would be useful, but it is often difficult to de-
termine which needs to be exposed when developing
features. Additionally, poorly thought out interfaces
can lead to maintenance problems down the road as
interfaces like the routing socket demonstrate.

In FreeBSD is adding new interfaces at a steady rate
and is developing a more mature understand of inter-
face design. Some areas still need work and a number
of interfaces need significant modernization, but the
project is heading in the right direction.

4 Conclusions and Future Work

We have covered our ports of the high performance
computing tools Ganglia, Sun Grid Engine, and Open
MPI to FreeBSD. In all three cases the basic task of
porting was relatively straight forward. Where we en-
countered problems we noted how we resolved ma-
jor issues and have discussed ways FreeBSD could be
changed to ease future porting efforts.

We believe that porting HPC tools to FreeBSD is
something more people could do and we encourage
others to jump in and help out. Some tools that would
be beneficial to port include: PLPA and its successor
hwloc; various PAPI[PAPI] based performance anal-
ysis tools; the Eclipse Parallel Tools Platform[PTP];
and the ROCKS cluster system[Rocks]. The porting
of PAPI based tools could provide a significant com-
petitive advantage to FreeBSD as the mainline Linux
kernel and most Linux distributions to not include na-

tive support for hardware performance counters, but
FreeBSD ships with hwpmc[FreeBSD-hwpmc] enabled
by default.

References

[Abell] Vic Abell, Frequently Asked Questions about
lsof. ftp://lsof.itap.purdue.edu/pub/
tools/unix/lsof/FAQ. January 18, 2010.

[APR] The Apache Portable Runtime Project.
http://apr.apache.org/

[Davis] Brooks Davis, Michael AuYeung, J. Matt
Clark, Craig Lee, James Palko, Mark Thomas,
Reflections on Building a High-performance
Computing Cluster Using FreeBSD.
Proceedings, AsiaBSDCon 2007.

[FreeBSD-hwpmc] The FreeBSD Project, hwpmc(4)
FreeBSD Kernel Interfaces Manual,
http://www.freebsd.org/cgi/man.cgi?
query=kvm&manpath=FreeBSD+8-current
September 22, 2008.

[FreeBSD-kvm] The FreeBSD Project, kvm(3),
FreeBSD Library Functions Manual,
http://www.freebsd.org/cgi/man.cgi?
query=kvm&manpath=FreeBSD+8-current
January 29, 2004.

[FreeBSD-pstat] The FreeBSD Project, pstat(8),
FreeBSD System Manager’s Manual,
http://www.freebsd.org/cgi/man.cgi?
query=pstat&manpath=FreeBSD+8-current
August 20, 2008.

[Frost] Jim Frost UNIX Signals and Process Groups.
http://www.cs.ucsb.edu/~almeroth/
classes/W99.276/assignment1/signals.html
August 17, 1994.

[libtopology] libtopology
http://libtopology.ozlabs.org/

[Massie] Matthew L. Massie and Brent N. Chun and
David E. Culler, The Ganglia Distributed
Monitoring System: Design, Implementation
And Experience. Parallel Computing. Volume
30. 2003.

[Metz] Craig Metz and Jun-ichiro itojun Hagino,
IPv4-Mapped Addresses on the Wire Considered
Harmful. http://tools.ietf.org/id/
draft-itojun-v6ops-v4mapped-harmful-02.
txt October 21, 2003.

[MPI] Message Passing Inteface Forum
http://www.mpi-forum.org/

[Open MPI] Open MPI http://www.open-mpi.org/

[PAPI] PAPI: Performance Application
Programming Interface.
http://icl.cs.utk.edu/papi/

[PlanetLab] PlanetLab: An open platform for
developing, deploying, and accessing
planetary-scale services.
http://www.planet-lab.org/

[Ports] The FreeBSD Collection Ports
http://www.freebsd.org/ports/index.html

[PTP] PTP - Parallel Tools Platform.
http://www.eclipse.org/ptp/

[PVM] PVM: Parallel Virtual Machine
http://www.csm.ornl.gov/pvm/

[RFC3411] D. Harrington, R. Presuhn, B. Wijen, An
Architecture for Describing Simple Network
Management Protocol (SNMP) Management
Frameworks. RFC 3411. Internet Engineering
Taskforce, Network Working Group. December
2002.

[Rocks] Rocks Clusters.
http://www.rocksclusters.org

[RRDtool] RRDtool
http://oss.oetiker.ch/rrdtool/

[SGE] Sun Grid Engine Project
http://gridengine.sunsource.net/

[FreeBSD-cpuaff] The FreeBSD Project,
cpuset getaffinity(2), FreeBSD System Calls
Manual, http://www.freebsd.org/cgi/man.
cgi?query=cpuset_getaffinity&manpath=
FreeBSD+8-current March 29, 2008.

[FreeBSD-cpuset] The FreeBSD Project, cpuset(2),
FreeBSD System Calls Manual,
http://www.freebsd.org/cgi/man.cgi?
query=cpuset&manpath=FreeBSD+8-current
March 29, 2008.

